

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering

Department

Manual for

ENCS515 Advance Computer Systems

Engineering Laboratory

Designed and Updated by Eng. Rajaie Imseeh

and Dr. Mohammed Hussein

September 2019

Table of Experiments

EXP. No. 1. Introduction to Android Programming 1

EXP. No. 2. Android Layouts .. 13

EXP. No. 3. Using Intents and Notifications 33

EXP. No. 4. SQLite Database .. 45

EXP. No. 5. Frame Animation and Tween Animation in Android54

EXP. No. 6. Singleton and Shared Preferences 68

EXP. No. 7. Fragments... 77

EXP. No. 8. Integrating REST API into Android Application 88

EXP. No. 9. Spring Boot Part 1 ... 100

EXP. No. 10. Spring Boot Part 2 ... 117

Page | 1

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 1. Introduction to Android Programming

1. Objectives

❖ Download Android Studio software.

❖ Create a “Hello World” Android Application.

❖ Design a New Application and understand the various parts of an Android.

❖ Install and run the application on Android Emulator and physical device.

2. Introduction

The goal of this lab is to learn the fundamentals of developing Android Applications, from

project creation to installation on a physical device. More specifically, you should gain the

knowledge of how to use basic development tools to support the application development process,

as well as the key components of an Android application itself.

Page | 2

2.1. Activity Classes

There are four major types of component classes in any Android application:

➢ Activities: Much like a Form for a web page, activities display a user interface for

performing a single task. An example of an Activity class would be one which displays a

Login Screen to the user.

➢ Services: These differ from Activities in that they have no user interface. Services run in

the background to perform some sort of task. An example of a Service class would be one

which fetches your email from a web server.

➢ Broadcast Receivers: The sole purpose of components of this type is to receive and react

to broadcast announcements which are either initiated by system code or other applications.

If you’ve ever done any work with Java Swing, you can think of these like Event Handlers.

For example, a broadcast announcement may be made to signal that a Wi-Fi connection

has been established. A Broadcast Receiver for an email application listening for that

broadcast may then trigger a Service to fetch your email.

➢ Content Providers: Components of this type function to provide data from their application

to other applications. Components of this type would allow an email application to use the

phone’s existing contact list application for looking up and retrieving an email address.

2.2. Android Manifest file

Every project has a file with this exact name in the root directory. It contains all the

information about the application that Android will need to run it: item Package name used to

identify the application. item List of Activities, Services, Broadcast Receivers, and Content

Provider classes and all their necessary information, including permissions. item System

Permissions the application must define in order to make use of various system resources, like

GPS. item Application defined permissions that other applications must have in order to interact

with this application. item Application profiling information. item Libraries and API levels that

the application will use.

Page | 3

2.3. R.java Class

This is a special static class that is used for referencing the data contained in your resource

files. If you open this file you will see several static inner classes for each of the resource types, as

well as static constant integers within them. Notice that the names of the member variables are the

same as the names of the values in your resource files. Each value in a resource file is associated

with an integer ID, and that ID is stored in a member variable of the same name, within a static

class named after its data type.

Android projects has 2 parts: Design and Coding. The components that are taken in design

window are given a specific id. This id is given so that during multiple identical components i.e.

2 textview or 2 buttons, they can be distinctly recognized. When you do the coding part, and you

want to make a component functionable then you first initialize it using findViewById method. Its

identical to the initialization of data variable in C language. This statement just connects designing

with the coding on per component basis.

3. Procedure

Before starting a new project, you need to be connected to the internet once you create a

new project. In this lab you are asked to build a simple application to get the user’s name from text

field and then display it on label. You will be creating an Activity class which will allow the user

to enter their name into a text field and press a button.

3.1. Creating new Android Project in Android Studio

Before moving on to slightly more advanced topics, now is a good time to validate that all

the required development packages are installed and functioning correctly. The best way to achieve

this goal is to create an Android application and compile and run it. This section will cover the

creation of a simple Android application project using Android Studio. Once the project has been

created, the next section will explore the use of the Android emulator environment to perform a

test run of the application.

Page | 4

Figure 1.1 welcome to Android Studio Screen

Figure 1.2 Create new Project Screen

Page | 5

3.2. Creating a New Android Project

The first step in the application development process is to create a new project within the

Android Studio environment. Begin, therefore, by launching Android Studio so that the “Welcome

to Android Studio” screen appears as illustrated in Figure 1.1.

Once this window appears, Android Studio is ready for a new project to be created. To

create the new project, simply click on the Start a new Android Studio project option to display

the first screen of the New Project wizard as shown in Figure 1.2.

3.3. Defining the Project and SDK Settings

In the New Project window, set the Application name field to “My Application”. The

application name is the name by which the application will be referenced and identified within

Android Studio and is also the name that will be used when the completed application goes on sale

in the Google Play store. The Package Name is used to uniquely identify the application within

the Android application ecosystem. It should be based on the reversed URL of your domain name

followed by the name of the application. For example, if your domain is www.mycompany.com,

and the application has been named “My Application”, then the package name might be specified

as follows: com.mycompany.myapplication If you do not have a domain name, you may also use

ebookfrenzy.com for the purposes of testing, though this will need to be changed before an

application can be published: com.ebookfrenzy.myapplication The Project location setting will

default to a location in the folder named AndroidStudioProjects located in your home directory

and may be changed by clicking on the button to the right of the text field containing the current

path setting. Click Next to proceed. On Target Android Devices screen as shown in Figure 1.3,

enable the Phone and Tablet option and set the minimum SDK setting to API 15: Android 4.0.3

(IceCreamSandwich) and click on Next. The reason for selecting an older SDK release is that this

ensures that the finished application will be able to run on the widest possible range of Android

devices.

Page | 6

Figure 1.3 Target Android Devices Screen

Figure 1.4 Add an Activity to Mobile Screen

Page | 7

3.4. Creating an Activity

The next step is to define the type of initial activity that is to be created for the application.

A range of different activity types is available when developing Android applications. For the

purposes of this example, however, simply select the option to create an Empty Activity as shown

in Figure 1.4.

With the Empty Activity option selected, click Next. On the final screen as shown in Figure

1.5 name the activity and title MainActivity. The activity will consist of a single user interface

screen layout which, for the purposes of this example, should be named activity_main shown in

Figure 1.5. Finally, click on Finish to initiate the project creation process.

Figure 1.5 Configure Activity Screen

Page | 8

3.5. Modifying the Created Application

At this point, Android Studio has created a minimal example application project and

opened the main window as shown in Figure 1.6.

Figure 1.6 Android Studio Application screen

The newly created project and references to associated files are listed in the Project tool

window located on the left-hand side of the main project window. The Project tool window has

several modes in which information can be displayed. By default, this panel will be in Android

mode. This setting is controlled by the drop-down menu at the top of the panel. If the panel is not

currently in Android mode, click on this menu and switch to Android mode.

when finished to proceed to the HelloWorld greeting Activity. The example project created

for us when you selected the option to create an activity consists of a user interface containing a

label that will read “Hello World” when the application is executed.

The user interface design for our activity is stored in a file located under app, res, layout in

the project file hierarchy. Using the Project tool window, locate this file as shown in Figure 1.7.

Page | 9

Figure 1.7 Layout Screen

Once located, double click on the file to load it into the User Interface Designer tool which

will appear in the center panel of the Android Studio main window. In the toolbar across the top

of Designer window is a menu currently set to Nexus 4 which is reflected in the visual

representation of the device within the Designer panel. A wide range of other device options are

available for selection by clicking on this menu.

As can be seen in the device screen, the layout already includes a label that displays a Hello

World! message. Running down the left-hand side of the panel is a palette containing different

categories of user interface components that may be used to construct a user interface, such as

buttons, labels and text fields.

➢ The first step in modifying the application is to delete the “Hello World!” TextView

component from the design. Begin by clicking on the TextView object within the user

interface view so that it appears with a blue border around it. Once selected, press the

Delete key on the keyboard to remove the object from the layout.

➢ The Android Studio Designer tool also provides an alternative to dragging and dropping

components from the palette on to the design layout. Components may also be added by

Page | 10

selecting the required object from the palette and then simply clicking on the layout at the

location where the component is to be placed

➢ Start by pressing right click on the constraint layout (which is considered as the main

layout) and click on convert layout to convert it to linear Layout as shown in Figure 1.8.

➢ Set the orientation to Vertical by selecting the Linear layout on the left-hand of the panel

and changing the orientation to Vertical from the right-side of the panel as in Figure 1.9.

➢ Find and drag Plain Text which exists in Text fields on the left-side of the panel as shown

in Figure 1.10. Then find and drag Button and TextView Form Widgets panel on the left-

side of the panel. You can see the layout for the application in Figure 1.11.

Figure 1.8 Converting the Constraint layout Screen

Page | 11

Figure 1.9 Changing the Layout to Vertical Layout Screen

Figure 1.10 Adding Plain Text Screen

Figure 1.11 Application Layout Design

Page | 12

➢ Open MainActivity.java file. Add the following code inside the onCreate method in the

MainActivity Class (don’t remove the first two lines in the onCreate method) (the

setContentView is for linking the MainActivity java file to the activity_main layout using

the R.java file).

Button button = (Button)findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 EditText editText=(EditText)findViewById(R.id.editText);
 TextView textView=(TextView) findViewById(R.id.textView);
 textView.setText(editText.getText().toString());

 }

});

➢ Your application is ready now, you can build the application and test it by running it on a

real device or on a virtual device.

4. Todo

Ask the Instructor or the Teacher Assistant for the todo (it will be specified at the end of

the lab) you should perform the todo on your own machine and show it next lab.

Page | 13

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 2. Android Layouts

1. Objectives

❖ What Views, View Groups, Layouts, and Widgets are and how they relate to each other.

❖ How to declare layouts dynamically at runtime.

❖ Adding widgets dynamically at runtime.

❖ Switching between two Activities.

❖ How to use Events and Event Listeners.

2. Introduction

In this lab you will be learning how to use and extend the Android user interface library.

In several ways, it is very similar to the Java Swing library, and in perhaps just as many ways it is

different. While being familiar with Swing may help in some situations, it is not necessary. It is

important to note that this lab is meant to be done in order, from start to finish. Each activity builds

on the previous one, so skipping over earlier activities in the lab may cause you to miss an

important lesson that you should be using in later activities.

Page | 14

2.1. Brief Background on View Classes

In Android, a user interface is a hierarchy composed of different View objects. The View

class serves as the base class for all graphical elements, of which there are two main types:

➢ Widgets: Can either be individual, or groups of UI elements. These are things like buttons,

text fields, and labels. Widgets directly extend the View class.

➢ Layouts: Provide a means of arranging UI elements on the screen. These are things like a

table layout or a linear layout. Layouts extend the ViewGroup class, which in turn extends

the View class.

Layouts are all subclasses of the ViewGroup class, and their main purpose is to control the

position of all the child views they contain. Figure 2.1 are some of the more common layout types

that are built into the Android platform.

Linear Layout Relative Layout Web View

• Vertical

• Horizontal

<html>

<!-- web page -->

</html>

A layout that organizes its

children into a single horizontal

or vertical view. It creates a

scrollbar if the length of the

window exceeds the length of

the screen.

Enables you to specify the

location of child object

relative to each other (child A

to the left of child B) or to the

parent (aligned to the top of

the parent).

Displays Web Pages.

Figure 2.1 Common Layout Types

Page | 15

Note: Although you can nest one or more layouts within another layout to achieve your UI

design, you should strive to keep your layout hierarchy as shallow as possible. Your layout draws

faster if it has fewer nested layouts (a wide view hierarchy is better than a deep view hierarchy).

Declaring the layouts for your user interface can be done dynamically (in code), statically

(via an XML resource file), or any combination of the two. In the following subsection, you will

build a set of user interfaces in code. In a future lab, you will build a set of user interfaces in XML.

3. Procedure

In this lab you are asked to build a new android application that allows the user to add and

show the added customers from customer’s list. This is done in two separated Activities one to

show all customers in the list (MainActivity) as shown in Figure 2.2.a and the other is to add new

customers to the list (AddCustomerActivity) as shown in Figure 2.2.b.

Figure 2.2.a Main Activity

Figure 2.2.b Add Customer Avtivity

Figure 2.2 Application Activities

Page | 16

3.1. Create a new Android Project:

➢ In Android Studio, create a new project:

• If you don't have a project opened, in the Welcome to Android Studio window, click

Start a new Android Studio project.

• If you have a project opened, select File > New Project.

➢ In the New Project screen, enter the following values:

• Application Name: "Customer List" see Figure 2.3.

• Company Domain: "birzeit.edu" see Figure 2.3.

➢ Click Next.

➢ In the Target Android Devices screen, keep the default values and click Next.

➢ In the Add an Activity to Mobile screen, select Empty Activity and click Next.

Figure 2.3 Creating new Project Screen.

Page | 17

3.2. Creating a Customer Model

At the beginning you are asked to build a customer class to enable you to create objects

from customer class. This will hold the data about the customer.

➢ Right click on the java package at the left hand of the panel and add new java class as

shown in Figure 2.4 (be careful to follow the java notation (class name capital letter)) as

isolated in Figure 2.5.

Figure 2.4 Adding New Java Class Screen

Figure 2.5 Adding Customer java Class Screen

Page | 18

➢ Add the following attributes to Customer class:

• mCustomerID (Long): private unique ID number for customer.

• mName (String): private holds the customer name.

• mPhone (String): private holds the phone number.

• mGender (String): private holds the gender type.

➢ Create empty constructor and a constructor with fields (press Alt + Insert on the keyboard)

as shown in Figure 2.6.a .

Figure 2.6.a Adding Constructor

Figure 2.6.b Adding Getters and Setters

Figure 2.6 adding Constructor, Getters and Setters Screen

➢ Create setters and getters to all attribute’s fields (press Alt + Insert on the keyboard) as

shown in Figure 2.6.b.

➢ Override toString method by the same way as the constructor and the getters and setters

are added.

➢ Add a static Array List of Customers in the Customer Class where you will save the added

Customers.

➢ The code for all attributes, constructors, setters, getters and toString methods are shown

below.

Page | 19

package edu.birzeit.customerlist;

import java.util.ArrayList;

public class Customer {
 public static ArrayList<Customer> customersArrayList=new ArrayList<Customer>();
 private long mCustomerId ;
 private String mName;
 private String mPhone;
 private String mGender;

 public Customer() {

 }

 public Customer(long mCustomerId, String mName, String mPhone, String mGender)
 {

 this.mCustomerId = mCustomerId;
 this.mName = mName;
 this.mPhone = mPhone;
 this.mGender = mGender;
 }

 public long getmCustomerId() {
 return mCustomerId;
 }

 public void setmCustomerId(long mCustomerId) {
 this.mCustomerId = mCustomerId;
 }

 public String getmName() {
 return mName;
 }

 public void setmName(String mName) {
 this.mName = mName;
 }

 public String getmPhone() {
 return mPhone;
 }

 public void setmPhone(String mPhone) {
 this.mPhone = mPhone;
 }

 public String getmGender() {
 return mGender;
 }

 public void setmGender(String mGender) {
 this.mGender = mGender;
 }

 @Override

 public String toString() {
 return "Customer{" +
 "\nmCustomerId=" + mCustomerId +
 "\n, mName='" + mName + '\'' +
 "\n, mPhone='" + mPhone + '\'' +
 "\n, mGender='" + mGender + '\'' +
 "\n}\n\n";
 }

}

Page | 20

3.3. Creating new Activity (Add Customer Activity)

There is two different ways to add a new activity one is simple and the other is standard

you can choose any way you feel it is easier:

❖ Simple Way

➢ The first way to add an activity is by right-clicking on the package where you want to add

a new activity and click on Activity then on Empty Activity as shown in Figure 2.7. the

New Android Avtivity screen will appear, change the Activity name to

AddCustomerActivity as shown in Figure 2.8. This will add a java class and a layout (.xml)

as shown in Figure 2.9. and it will also add the activity to the manifests file as shown in

Figure 2.14.

Figure 2.7 Adding Empty Activity

Page | 21

Figure 2.8 New Android Activity Screen

Figure 2.9 Activity java and layout

Page | 22

❖ Standard way

➢ The second way is by adding each component separately:

• Start by adding a java class called AddCustomerActivity by making its super class

AppCompatActivity as shown in Figure 2.10 and override the onCreate method from

AppCompatActivity (press Alt + Insert on the keyboard) as shown in Figure 2.11.a and

then click on override methods and onCreate method as shown in Figure 2.11.b the

result will be as shown in Figure 2.11.c.

Figure 2.10 Adding AddCustomerActivity Class Screen

Page | 23

Figure 2.11.a

Figure 2.11.b

Figure 2.11.c

Figure 2.11 Overriding OnCreate Method in Add Customer Activity.

Page | 24

• Then add the xml file in the res/layout package which is called activity_add_customer

by right-clicking on the layout package and the by clicking new Layout resource file as

shown in Figure 2.12. The new resource file screen will appear you can change the root

element (root layout to LinearLayout) as shown in Figure 2.13

• After that you should add the activity in the manifests file as shown in Figure 2.14.

• Finally, you should link the java file with the layout by adding

setContentView(R.layout.activity_add_customer) in onCreate method.

Figure 2.12 Adding New .xml Layout Screen

Page | 25

Figure 2.13 Adding activity_add_customer Layout Screen

Figure 2.14 Adding the Activity in the Manifests file

Page | 26

3.4. Making the activity_add_customer Layout (statically using .xml or drag and drop)

In this part you are going to design the layout shown in Figure 2.2.b this can be designed

using the drag and drop.

➢ Convert the root layout into a vertical layout to add the widgets and layouts inside it.

➢ Add a textview under the LinearLayout (vertical) and change the Text in the text View to

“Customer Info” from the right-side panel attributes.

➢ Add LinearLayout (horizontal) under the LinearLayout (vertical) then add textview and a

plaintext (EditText) inside the LinearLayout (horizontal).

• Change the Horizontal LinerLayout layout_hight from match_parent to wrap_content.

• Change the text in the textview to “Id”.

• Change the EditText ID in the right-panel Attributes to “editText_Id”.

➢ Remove the text in the EditText and add in the hint “Insert Id”.

➢ Add LinearLayout (horizontal) under the LinearLayout (vertical) then add textview and a

plaintext (EditText) inside the LinearLayout (horizontal).

• Change the Horizontal LinerLayout layout_hight from match_parent to wrap_content.

• Change the text in the textview to “Name”.

• Change the EditText ID in the right-panel Attributes to “editText_Name”.

• Remove the text in the EditText and add in the hint “Insert Name”.

➢ Add LinearLayout (horizontal) under the LinearLayout (vertical) then add textview and a

plaintext (EditText) inside the LinearLayout (horizontal).

➢ Change the Horizontal LinerLayout layout_hight from match_parent to wrap_content.

• Change the text in the textview to “Phone”.

• Change the EditText ID in the right-panel Attributes to “editText_Phone”.

• Remove the text in the EditText and add in the hint “Insert Phone Number”.

Page | 27

➢ Add LinearLayout (horizontal) under the LinearLayout (vertical) then add textview and a

Spinner inside the LinearLayout (horizontal) (if you can’t find the spinner in the right-side

panel palette search for it).

• Change the Horizontal LinerLayout layout_hight from match_parent to wrap_content.

• Change the text in the textview to “Gender”. This will be defined in the java code.

• Change the spinner ID in the right-panel Attributes to “spinner_Gender”.

➢ Add a Button under the root vertical layout. Change the Text to “Add Customer” and the

ID to “button_Add_Customer” from the right-side panel Attributes.

➢ Figure 2.15 shows the Component Tree of the activity_add_customer layout which appears

in the left-side panel.

Figure 2.15 Add Customer Activity Layout Component Tree

▪ Note that you can change the attributes of the widgets as you wish (changing the size

of the text, the color, the alignment, etc.…).

Page | 28

3.5. Implementing Add Customer Activity Java Class

In this task, you will give the user the ability to enter their own customers by displaying

Add Customer Activity which contains all required customer information that should be entered

as you designed in the previous step. In order to accomplish this task, the following steps show the

main requirements of this task that are implemented in AddCustomerActivity.

➢ Define the gender spinner you added in the layout.

➢ Add a listener to “Add Customer” button using setOnClickListener method.

➢ Validate the input information about new customer e.g. (Not empty name).

➢ Return to “MainActivity” once the customer is added successfully.

After reading the main requirements of this task, now you can begin implementation. The

following procedure shows how the above requirements are implemented:

➢ In OnCreate method, find and initialize the spinner_Gender for defined list of data.

Depending on the requirements, the list should have two options: Male and Female the

code below shows how to add options in the spinner.

String[] options = { "Male", "Female" };
final Spinner genderSpinner =(Spinner)
findViewById(R.id.spinner_Gender);
ArrayAdapter<String> objGenderArr = new
ArrayAdapter<>(this,android.R.layout.simple_spinner_item, options);
genderSpinner.setAdapter(objGenderArr);

➢ In OnCreate method, find the remaining EditTexts: editText_Id, editText_Name and

editText_Phone by using findViewById method in order to extract and build Customer

object. Don’t forget to cast to EditText. The following code shows how to get the EditTexts.

final EditText idEditText =
(EditText)findViewById(R.id.editText_Id);
final EditText nameEditText =
(EditText)findViewById(R.id.editText_Name);
final EditText phoneEditText =
(EditText)findViewById(R.id.editText_Phone);

Page | 29

Find the button_Add_Customer using findViewById method. Then, impalement onClick

method by using setOnClickListener. When the user clicks on the button, the customer information

should be converted to Customer object in order to add it to customersArrayList which exists in

Customer class. Once the customer has been added successfully, the activity should disappear. The

following code is how to implement the setOnClickListener method.

Button addCustomerButton = (Button) findViewById(R.id.button_Add_Customer);
addCustomerButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
Customer newCustomer =new Customer();

if(idEditText.getText().toString().isEmpty()) newCustomer.setmCustomerId(0);
else newCustomer.setmCustomerId(Long.parseLong(idEditText.getText().toString()));
if(nameEditText.getText().toString().isEmpty()) newCustomer.setmName("No Name");
else newCustomer.setmName(nameEditText.getText().toString());
if(phoneEditText.getText().toString().isEmpty()) newCustomer.setmPhone("No Phone");
else newCustomer.setmPhone(phoneEditText.getText().toString());

newCustomer.setmGender(genderSpinner.getSelectedItem().toString());

Customer.customersArrayList.add(newCustomer);

Intent intent=new Intent(AddCustomerActivity.this,MainActivity.class);
AddCustomerActivity.this.startActivity(intent);
finish();

 }

});

3.6. Implementing Main Activity Java class

Work done in this section will be limited to the MainActivity.java file. MainAvtivity is an

Activity class which displays a vertical scrollable list of all the customers as shown in Figure 2.2.a.

In previous section, you defined layouts for your interface using XML, but there are plenty

of instances where it is still necessary to do it at run-time in code. For instance, you may want to

dynamically change the layout based on some type of user input. Mainly, in this section, you must

define layouts and add widgets at runtime in code.

For customers view, you should define two vertical linear layouts, where the first linear

layout should have button to add new customer which directs the user to AddCustomerActivity

and the second linear layout should be added to first linear layout in order to display the available

customers to be as a list. Follow the following procedure to see how that can be done:

Page | 30

➢ Remove this line setContentView(R.layout.activity_main) from onCreate method.

➢ Define first and second Layouts and Button as shown in the following code.

LinearLayout firstLinearLayout=new LinearLayout(this);
Button addButton =new Button(this);
LinearLayout secondLinearLayout=new LinearLayout(this);

➢ Define a scrollview to make the display list scrollable

ScrollView scrollView=new ScrollView(this);

➢ Set the orientation of the firstLinearLayout and the secondLinearLayout to Vertical. See

the following code.

firstLinearLayout.setOrientation(LinearLayout.VERTICAL);
secondLinearLayout.setOrientation(LinearLayout.VERTICAL);

➢ Set the text of the addButton to “Add Customer” and the layout_width and layout_hight to

wrap_content. See the following code.

addButton.setText("Add Customer");
addButton.setLayoutParams(new
LinearLayout.LayoutParams(ViewGroup.LayoutParams.WRAP_CONTENT,ViewGroup
.LayoutParams.WRAP_CONTENT));

➢ Add the addButton to the firstLinearLayout and the secondLinearLayout to the scrollView,

and add the scrollView to the firstLinearLayout as shown in the code below.

firstLinearLayout.addView(addButton);

scrollView.addView(secondLinearLayout);

firstLinearLayout.addView(scrollView);

➢ Finally, set the First Linear Layout as a main content view for the MainActivity.

setContentView(firstLinearLayout);

Page | 31

➢ Add onClickListener for addButton which is used to show AddCustomerActivity. The

following code shows how you can add listener and how the other activity can be activated.

addButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 Intent intent = new
Intent(MainActivity.this,AddCustomerActivity.class);
 MainActivity.this.startActivity(intent);
 finish();

 }

});

➢ Finally, to display the customers that exist in customersArrayList, you should write code

in onCreate method in order to work through on that list to add customer information on

the second linear layout that you already defined it in previous steps. The following code

shows a suggested implementation:

for(Customer objCustomer : Customer.customersArrayList) {
 TextView txtCustomerInfo = new TextView(this) ;
 txtCustomerInfo.setTextAppearance(R.style.TextAppearance_AppCompat_Display2);
 txtCustomerInfo.setText(objCustomer.toString());

 secondLinearLayout .addView(txtCustomerInfo);

}

4. Building Web Apps in WebView (Optional Section)

If you want to deliver a web application (or just a web page) as a part of a client application,

you can do it using WebView. The WebView class is an extension of Android's View class that

allows you to display web pages as a part of your activity layout. It does not include any features

of a fully developed web browser, such as navigation controls or an address bar. All that WebView

does, by default, is show a web page. A common scenario in which using WebView is helpful is

when you want to provide information in your application that you might need to update, such as

an end-user agreement or a user guide. Within your Android application, you can create an Activity

that contains a WebView, then use that to display your document that's hosted online.

Page | 32

Another scenario in which WebView can help is if your application provides data to the

user that always requires an Internet connection to retrieve data, such as email. In this case, you

might find that it's easier to build a WebView in your Android application that shows a web page

with all the user data, rather than performing a network request, then parsing the data and rendering

it in an Android layout. Instead, you can design a web page that's tailored for Android devices and

then implement a WebView in your Android application that loads the web page. Adding a

WebView to Your Application:

➢ To add a WebView to your Application, simply include the <WebView> element in your

activity layout. For example, here's a layout file in which the WebView fills the screen:

<WebView

android:id="@+id/webview"

android:layout_width="fill_parent"

android:layout_height="fill_parent" />

➢ To load a web page in the WebView, use loadUrl(). For example:

WebView myWebView = (WebView) findViewById(R.id.webview);

myWebView.loadUrl("https://ritaj.birzeit.edu");

Before this will work, however, your application must have access to the Internet. To get

Internet access, request the INTERNET permission in your manifest file:

 <uses-permission android:name="android.permission.INTERNET" />

5. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 33

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 3. Using Intents and Notifications

1. Objectives

❖ Install google play services in the Android Emulator.

❖ Using Intent class to apply different functionalities.

❖ How to create Toast Notifications.

❖ How to incorporate Google Maps into an application.

❖ How to incorporate Gmail into an application.

❖ How to incorporate Dial Up into an application.

❖ How to post notifications in the Notification Bar

2. Introduction

In this lab you are going to learn how intents are coded and implemented. And the

importance of intents in any android application. Also, you will learn how to make Toast massages

in any application.

2.1. Intents In android:

It is a data structure that represents an operation to be performed. Intents is constructed by

one component that wants some work and it is received by one activity that can perform that work.

For example, you can use the intent Class to start new activity or to perform a service.

Page | 34

2.2. Intent Fields:

➢ Action: String represents a desired operation. You can set the action of the activity by two

ways:

• By passing it in the constructor:

• By setAction method

examples of the actions that can be performed are:

• ACTION_MAIN: start as initial activity of app

• ACTION_DIAL: dial a number

• ACTION_EDIT: display data to edit

• ACTION_SYNC: synchronize device data with server

➢ Data: data associated with the intent. It is formatted as a uniform resource identifier (URI).

For example, to dial a number, you can use the following URI.

Intent intent=new Intent(Intent.ACTION_DIAL,Uri.parse("tel:+1555"));

➢ Category: additional information about the components that can handle the intent. For

example, CATEGORY_LAUNCHER: can be the initial activity a task.

➢ Component: the component that should receive this intent. Use this field when there is

exactly one component that should receive the intent.

➢ Extras: what additional information you need to provide (key/value pairs).

Page | 35

Types of Intents

➢ Explicit intents: specify the component to start by name (the fully-qualified class name).

You'll typically use an explicit intent to start a component in your own app, because you

know the class name of the activity or service you want to start. For example, start a new

activity in response to a user action or start a service to download a file in the background.

➢ Implicit intents: do not name a specific component, but instead declare a general action to

perform, which allows a component from another app to handle it. For example, if you

want to show the user a location on a map, you can use an implicit intent to request that

another capable app show a specified location on a map.

• Intent resolution: when the activity to be activated using implicit intents, android tries

to find activity that match the intent by comparing the contents of the intent to the

intent filters declared in the manifest file of other apps on the device. Android package

manager is responsible for deciding which component is best suited to handle your

intent. Intent resolution relies on two kind of information:

 An Intent describing a desired operation.

 Intents filters which describe which operations an activity can handle. It is

specified either in Android Manifest file or programmatically.

2.3. User notifications:

Notifications basically are messages outside the user interface of the application, for

example, if you download a book from the internet, you need to use the application while the book

is downloading and let the user know when the download finishes. So, the developer should display

the message to user contains that information.

In this experiment we will talk about two kinds of user notifications

Page | 36

➢ Toast Messages

Transitory messages that pop up on the current window. It automatically fades into and out

of the view without user interaction or response.

➢ Notification Area (Status Bar Notification)

Android provides the notification area for alerting users about events. It also provides a

notification drawer that user can pull down to see more detailed information about notifications.

The operations on the notification area are managed by system service.

3. Procedure

In this Lab you are going to create an application that has 5 buttons that will perform the

following operations: open Dial (Phone) using intents, open Gmail using intents, open google maps

using intents, display a notification message, display a toast message.

For displaying notification, you will create a channel to display the notification so the API

for the android must not be less than 26 (Android 8.0 Oreo).

3.1. Creating a new Project with API 26

Start by Creating a new Project and change the name for “Intents And Notifications” then

click on next, change the API for Phone and Tablet for API 26 (Android 8.0 Oreo) as shown in

Figure 3.1. Then click next and finish.

Figure 3.1 Create New Project API 26

Page | 37

3.2. Adding Buttons

Convert the MainActivity root layout to LinearLayout and change the orientation to

Vertical from the right-side panel. Add Five Button in the MainActivity Layout (activity_main)

and change the names and the Ids as shown in the component tree in Figure 3.2.

Figure 3.2 Component Tree Screen

3.3. Creating Listener for each Button

➢ Create five buttons in the MainActivity java file and find view by Id for each button as

shown in the code below.

Button dialButton = (Button) findViewById(R.id.button_dial);
Button gmailButton = (Button) findViewById(R.id.button_gmail);
Button mapsButton = (Button) findViewById(R.id.button_maps);
Button notificationButton = (Button) findViewById(R.id.button_notification);
Button toastButton = (Button) findViewById(R.id.button_toast);

➢ Create a click Listener to dial button

• Create a new Object of Intent this will start a new activity

• Set the action for the intent object to Intent.ACTION_DIAL

• Set the data for the intent object to Uri.parse(“tel:+9725”)

• Execute the intent by calling startActivity method and pass the intent to this method

• the following code shows how these steps and Figure 3.3 shows the result when

clicking the button.

tel:+9725

Page | 38

dialButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 Intent dialIntent =new Intent();
 dialIntent.setAction(Intent.ACTION_DIAL);
 dialIntent.setData(Uri.parse("tel:+9725"));
 startActivity(dialIntent);

 }

});

Figure 3.3 Dial Screen

➢ Create a click Listener to gmail button

• Create a new Object of Intent call it “gmailIntent” this will start a new activity

• Set the action for the intent object to Intent.SENDTO

• Set the type for the intent object to “message/rfc822”

• Set the data for the intent object to Uri.parse(“mailto:”)

• Execute the intent by calling startActivity method and pass the intent to this method

• the following code shows how these steps and Figure 3.4 shows the result when

clicking the button.

Page | 39

• You can set the sent to mail, subject and the text of the mail in the extras as shown in

the code below

• Send the message to your email and check it to be sure that the message was sent

successfully.

gmailButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 Intent gmailIntent =new Intent();
 gmailIntent.setAction(Intent.ACTION_SENDTO);
 gmailIntent.setType("message/rfc822");
 gmailIntent.setData(Uri.parse("mailto:"));
 gmailIntent.putExtra(Intent.EXTRA_EMAIL,"rajaie.imseeh@gmail.com");
 gmailIntent.putExtra(Intent.EXTRA_SUBJECT,"My Subject");
 gmailIntent.putExtra(Intent.EXTRA_TEXT,"Content of the message");
 startActivity(gmailIntent);

 }

});

Figure 3.4 Send Gmail Screen

Page | 40

➢ Create a click Listener to Google Maps button

• Create a new Object of Intent this will start a new activity

• Set the action for the intent object to Intent.ACTION_VIEW

• Set the data for the intent object to Uri.parse(“geo:19.076,72.8777”)

• Execute the intent by calling startActivity method and pass the intent to this method

• the following code shows how these steps and Figure 3.5 shows the result when

clicking the button.

mapsButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 Intent mapsIntent =new Intent();
 mapsIntent.setAction(Intent.ACTION_VIEW);
 mapsIntent.setData(Uri.parse("geo:19.076,72.8777"));
 startActivity(mapsIntent);

 }

});

Figure 3.5 Google Maps Screen

Page | 41

➢ Notification Creation

• To create a notification, you need first to create a notification channel this can be

implemented by creating a method in the main activity to create a channel. Every

notification channel has a channel Id (create as global constant variable) and name it

MY_CHANNEL_ID, a channel Name(create as global constant variable) and name it

MY_CHANNEL_NAME and an Importance (this will determine how much the

notification should interrupt the user, higher the importance in the notification, the

more interruptive the notification will be).

• Using the notification manager, you will create the notification channel, the code below

is the implementation of the notification channel.

private static final String MY_CHANNEL_ID = "my_chanel_1";

private static final String MY_CHANNEL_NAME = "My channel";

private void createNotificationChannel() {
 int importance = NotificationManager.IMPORTANCE_DEFAULT;
 NotificationChannel channel = new NotificationChannel(MY_CHANNEL_ID,
MY_CHANNEL_NAME, importance);
 NotificationManager notificationManager =

getSystemService(NotificationManager.class);
 if (notificationManager != null) {
 notificationManager.createNotificationChannel(channel);

 }

}

• After that you will create another method that will create the notification in this

channel you created, this method will also be implemented in the main activity. You

will need the following components shown in Table 3.1 to create the notification.

Table 3.1 needed components for creating the notification

Intent This is for starting an activity when clicking the notification.

Pending Intent This is created to pass it to the notification using setContentIntent.

Notification Title The title of the notification (global constant) passed to the method

Notification Body The Body of the notification (global constant) passed to the method

Notification small Icon Use the mipmap ic_launcher

Property Set to default

Page | 42

• Using the notification manager compat notify the created notification, this method will

need an Id (create as global constant).

• The code below shows the method to create the notification.

private static final int NOTIFICATION_ID = 123;

private static final String NOTIFICATION_TITLE = "Notification Title";

private static final String NOTIFICATION_BODY = "This is the body of my notification";

public void createNotification(String title, String body) {
 Intent intent = new Intent(this, MainActivity.class);
 PendingIntent pendingIntent = PendingIntent.getActivity(this,0,intent, 0);

 createNotificationChannel();

 NotificationCompat.Builder builder = new NotificationCompat.Builder(this,
 MY_CHANNEL_ID)
 .setSmallIcon(R.mipmap.ic_launcher)
 .setContentTitle(title)

 .setContentText(body)

 .setStyle(new NotificationCompat.BigTextStyle().bigText(body))
 .setPriority(NotificationCompat.PRIORITY_DEFAULT)
 .setContentIntent(pendingIntent);

 NotificationManagerCompat notificationManager =

NotificationManagerCompat.from(this);
notificationManager.notify(NOTIFICATION_ID, builder.build());

}

• Create a click Listener to Notification button

• Call the createNotification method which will create the notification channel and the

notification to notify it, the code below shows how to create the listener and call the

createNotification method passing the title and the body to the method.

notificationButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 createNotification(NOTIFICATION_TITLE,NOTIFICATION_BODY);
 }

});

• Figure 3.6 Shows the notification created after clicking the notification button.

Page | 43

Figure 3.6 Notification displaying Screen

➢ Create a click Listener for the Toast Message button

• To create a Toast Message, you will need to create a Toast object and pass the

application context, text for the toast message, and the duration (Length short for short

duration toast message and Length Long for long duration toast message).

• Then call the method show() to show the toast message. The code below shows how to

create a toast message and Figure 3.7 shows the toast message after clicking the toast

message button.

Page | 44

private static final String TOAST_TEXT = "This my toast message";

toastButton.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 Toast toast =Toast.makeText(MainActivity.this,
 TOAST_TEXT,Toast.LENGTH_SHORT);
 toast.show();

 }

});

Figure 3.7 Toast Massage Displaying Screen

4. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 45

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 4. SQLite Database

1. Objectives

❖ How to create your own database using SQLite.

❖ How to create custom Views from scratch to suit a specific need.

❖ How to create Confirmation Dialogs.

2. Introduction

In this lab, you will be learning how to save data to a database for repeating or structured

data, such as contact information. This experiment assumes that you are familiar with SQL

databases in general and helps you get started with SQLite databases on Android.

2.1. Define a schema and contract

One of the main principles of SQL databases is the schema: a formal declaration of how

the database is organized. The schema is reflected in the SQL statements that you use to create

your database. You may find it helpful to create a companion class, known as a contract class,

which explicitly specifies the layout of your schema in a systematic and self-documenting way.

Page | 46

A contract class is a container for constants that define names for URIs, tables, and

columns. The contract class allows you to use the same constants across all the other classes in the

same package. This lets you change a column name in one place and have it propagate throughout

your code.

2.2. Create a database using an SQL helper

Once you have defined how your database looks, you should implement methods that

create and maintain the database and tables. Just like files that you save on the device's internal

storage, Android stores your database in your app's private folder. Your data is secure, because by

default this area is not accessible to other apps or the user. The SQLiteOpenHelper class contains

a useful set of APIs for managing your database. When you use this class to obtain references to

your database, the system performs the potentially long-running operations of creating and

updating the database only when needed and not during app startup. All you need to do is call

getWritableDatabase() or getReadableDatabase().

2.3. Put information into a database

Insert data into the database by passing a ContentValues object to the insert(). The first

argument for insert() is simply the table name. The second argument tells the framework what to

do if the ContentValues is empty. The insert() methods returns the ID for the newly created row,

or it will return -1 if there was an error inserting the data. This can happen if you have a conflict

with pre-existing data in the database.

2.4. Read information from a database

To read from a database use the query() method, passing it your selection criteria and

desired columns. The method combines elements of insert() and update(), except the column list

defines the data you want to fetch (the "projection"), rather than the data to insert. The results of

the query are returned to you in a Cursor object.

Page | 47

2.5. onCreate and onResume methods in Activities

➢ onCreate()

You must implement this callback, which fires when the system first creates the activity.

On activity creation, the activity enters the Created state.

➢ onResume()

When the activity enters the Resumed state, it comes to the foreground, and then the system

invokes the onResume() callback. This is the state in which the app interacts with the user.

3. Procedure

You are going to upgrade the second experiment to save the customers in your app's private

folder using SQLiteOpenHelper API, rather than saving it in array List as you did in the second

experiment. You will not change the layout of the second experiment so start by opening the

second experiment project.

3.1. Creating DataBaseHelper class that extends SQLiteOpenHelper Class

Create a new class and call it DataBaseHelper by right-Cliking on the package name to add

a new class, fill the name to “DataBaseHelper” and the Superclass to

“android.database.sqlite.SQLiteOpenHelper” and then click ok as shown in Figure 4.1.

https://developer.android.com/reference/android/app/Activity.html#onResume()

Page | 48

Figure 4.1 Adding DataBaseHelper Class

➢ Add a constructor to the DataBaseHelper class, this constructor will call the super

constructor which will create the data base, this constructor will take four values (Context,

name of the database, factory, and the version of the data base). As shown in the code

below.

public DataBaseHelper(Context context, String name,
SQLiteDatabase.CursorFactory factory, int version) {
 super(context, name, factory, version);
}

➢ override the onCreate and OnUpgrade methods

As shown in Figure 4.2 override the onCreate and onUpgrade methods. onCreate will

create the table and onUpgrade will update the table if needed in the future, In this lab you will

implement onCreate method.

Page | 49

Figure 4.2 Overriding OnCreate and OnUpgrade methods

• implementing onCreate method

You will execute the query for creating a customer table, this table has ID column with

prototype Long and it’s the primary key, a NAME column with prototype Text, a PHONE column

with prototype Text and a GENDER entry with prototype Text as shown in the code below.

@Override

public void onCreate(SQLiteDatabase sqLiteDatabase) {

 sqLiteDatabase.execSQL("CREATE TABLE CUSTOMER(ID LONG PRIMARY
KEY,NAME TEXT, PHONE TEXT,GENDER TEXT)")
);

}

Page | 50

➢ implement a method to add a customer

Before inseting you will create an object from SQLiteDataBase which will call the

getWritableDatabase() method, this will give access to write to the database. To add a Customer

to the data base you will use the insert method from the SQLiteDataBase class. This method takes

three values, the fist is the table name to insert the value, the second will be set to null (If you

specify null, the framework does not insert a row when there are no values) and a ContentValues

which the entry that will be used to be added to the DataBase. The code below shows the method

to insert an entry to the Customer Table.

public void insertCustomer(Customer customer) {
 SQLiteDatabase sqLiteDatabase = getWritableDatabase();

 ContentValues contentValues = new ContentValues();
 contentValues.put("ID", customer.getmCustomerId());
 contentValues.put("NAME", customer.getmName());
 contentValues.put("PHONE", customer.getmPhone());
 contentValues.put("GENDER", customer.getmGender());
 sqLiteDatabase.insert("CUSTOMER", null, contentValues);
}

➢ implementing a method to get all Customers from Customer table

To get entry from the database tables, you will create an object from SQLiteDataBase

which will call the getReadableDatabase () method, this will give access to read from the database.

To get all customers you will execute a raw query which will select from the customer table all the

entries. The returned value will be as Cursor. (read about Cursor to know how to deal with them

Link.). The code below shows how to get all customers from the Customer table in the database.

public Cursor getAllCustomers() {
 SQLiteDatabase sqLiteDatabase = getReadableDatabase();

 return sqLiteDatabase.rawQuery("SELECT * FROM CUSTOMER", null);
}

https://developer.android.com/reference/android/database/Cursor

Page | 51

3.2. Removing the ArrayList and saving the Values to the Customer Table

➢ Go to the Customer Class, remove the customersArrayList (since you will not need for it)

➢ In the AddCustomerActivity you will replace the

Customer.customersArrayList.add(newCustomer) with a new code to add to the Customer

table in the data base.

• First create an object from the DataBaseHelper class. And pass the context

(AddCustomerActivity.this), name of the database “EXP4”, the factory to “null” and

the version to 1 as shown in the code below. Then call the insertCustomer method by

passing the customer object to it.

DataBaseHelper dataBaseHelper =new
DataBaseHelper(AddCustomerActivity.this,"EXP4",null,1);
dataBaseHelper.insertCustomer(newCustomer);

3.3. Displaying all Customers that were added to the Customer Table.

➢ In the MainActivity make the declaration of the secondLinearLayout global. (only the

declaration. Do not create new object, the creation must be in the onCreate method)

➢ Remove the code which display the old Customer.customersArrayList.

➢ Override the OnResume method.

➢ Get All customers from the Customer table form the database

• First create an object from the DataBaseHelper class. And pass the context

(MainActivity.this), name of the database “EXP4”, the factory to “null” and the version

to 1 as shown in the code below.

• Create a Cursor and call the getAllCustomers method the returned value will be saved

in the created Cursor.

Page | 52

➢ Display All Customers returned from the database

• Remove all old views from the secondLinearLayout by calling removeAllViews

Method.

• Display all customers returned from the Cursor in textViews

• Add the textviews to the second Linerlayout.

➢ The code below shows how the implementation of onResume method

protected void onResume() {
 super.onResume();
 DataBaseHelper dataBaseHelper =new
DataBaseHelper(MainActivity.this,"EXP4", null,1);
 Cursor allCustomersCursor = dataBaseHelper.getAllCustomers();

 secondLinearLayout.removeAllViews();
 while (allCustomersCursor.moveToNext()){
 TextView textView =new TextView(MainActivity.this);
 textView.setText(

 "Id= "+allCustomersCursor.getString(0)
 +"\nName= "+allCustomersCursor.getString(1)
 +"\nPhone= "+allCustomersCursor.getString(2)
 +"\nGender= "+allCustomersCursor.getString(3)
 +"\n\n"
);
 secondLinearLayout.addView(textView);
 }

}

➢ The output is shown in Figure 4.3

Page | 53

Figure 4.3 Experiment 4 Output

4. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 54

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 5. Frame Animation and Tween Animation in Android

1. Objectives

❖ To provide a good understanding of how to use Frame animation and Tween animation in

android on any View.

❖ To provide knowledge of some attributes of translate, rotate and scale tags.

❖ To provide familiarity with Animation Class.

2. Introduction

Animations add vivacity and personality to your apps. There are two types of animations

that you can do with the Animation framework of Android: Frame animation and Tween

animation.

2.1. Frame animation

 Is series of frames is drawn one after the other at regular. creates an animation by showing

a sequence of images in order with an AnimationDrawable.

Page | 55

2.2. Tween animation

Are simple transformations of position, size, rotation to the content of a View. Animation

can be defined in XML that performs transitions such as rotating, fading, moving, and stretching

on a graphic.

➢ Animation Class: Animation class is used to hold an animation which is loaded in it from

the anim folder of resource directory. In the above code, the animation reference variable

holds the animation xml files loaded using AnimationUtils class.

➢ AnimationUtils: AnimationUtils class is used to fetch an animation file from anim folder

by using loadAnimation method of this class which has two arguments: First argument

defines context in which the animation is to be loaded which must be the context of given

activity on which the animation is to be loaded. Second argument defines the id of the

animation in resources file.

➢ Main attributes in Tween animation

• xmlns:android: This attribute must be defined in the root tag to get the schema path of

this XML file.

• android:pivotY and android:pivotY: Used for specifying the center point of the

rotation.

• android:duration: This attribute is used to define the duration in which the animation

needs to be completed in milliseconds.

• android:fromXDelta: This attribute is used to define the starting point of translation

animation on Xaxis.

• android:toXDelta: This attribute is used to define the ending point of translation

animation on Xaxis. Values from -100 to 100 ending with "%", indicating a percentage

relative to itself. Values from -100 to 100 ending in "%p", indicating a percentage

relative to its parent. A float value with no suffix, indicating an absolute value.

• android:fromXScale: Starting X size offset, where 1.0 is no change.

• android:toXScale: Ending X size offset, where 1.0 is no change.

• android:fromYScale: Starting Y size offset, where 1.0 is no change.

• android:toYScale: Ending Y size offset, where 1.0 is no change.

• android:pivotX: The X coordinate to remain fixed when the object is scaled.

• android:pivotY: The Y coordinate to remain fixed when the object is scaled.

Page | 56

3. Procedure

You are going to build two different applications the first is by using frame animation and

the second is by tween animation. You will need for the frame animation application several

images. However, in tween one image is needed.

3.1. Frame animation Application

Create a new project with the name “Frame Animation Application”. This project will

exchange between two images. The idea behind a frame animation is simple: You’ll be cycling

through a series of images very quickly, just like an old movie. The “frame” refers to a single

image. Thus, the first step in creating a custom frame animation is to create a sequence of images.

You have two options here: you can use XML drawable (such as shape drawable) or actual

image files. For the sake of simplicity, you are going to use the following series of PNG images.

You should make sure to have images sized appropriately for different screen densities.

 Figure 5.1 First Image

Figure 5.2 Second Image

Page | 57

➢ import those images into the res/drawable folder and call them off for Figure 5.1 and on

for Figure 5.2 as shown in Figure 5.3

➢ Define an XML Drawable for our animation. We can use transition to make the Frame

Animation. It just cycles through a sequence of provided images. Call this file “animation”

and locate it in res/drawable as shown in Figure 5.3.

➢ The code below is to make transition between two images (on and off) this code should be

in the animation.xml folder.

<?xml version="1.0" encoding="utf-8"?>

<transition xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:drawable="@drawable/off" />

 <item android:drawable="@drawable/on" />

</transition>

Figure 5.3 Animation xml Code File and On and Off Images Location Screen

Page | 58

➢ Add a button and an image view in the activity_main layout as shown in Figure 5.4.

➢ Add @drawable/animation to the source compact when adding the image view as shown

in Figure 5.5.

Figure 5.4 activity_main layout

Figure 5.5 Adding the animation to the ImageView

➢ In the main activity java folder, you will make objects of Button and the ImageView and

connect them with the button and the imageView in the layout folder as shown in the code

below.

➢ Make a setOnClickListener method to the button.

➢ Make a TransitionDrawable object in the button click listener and start the transition by

calling the startTransition method and pass the duration to this method in milli Second as

shown in the code below.Figure 5.6 shows before clicking the button and Figure 5.7 after

clicking the button.

Button button = (Button) findViewById(R.id.button);
final ImageView imageView = (ImageView)
findViewById(R.id.imageView);

button.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 TransitionDrawable transitionDrawable = (TransitionDrawable)

 imageView.getDrawable();

 transitionDrawable.startTransition(1000);

 }

});

Page | 59

Figure 5.6 Before Clicking the Button

Figure 5.7 After Clicking the Button

➢ Try to change the method from startTransition to reverseTransition and understand the

difference between these methods.

Page | 60

3.2. Tween animation Application

Create a new project with the name “Tween Animation Application”. Tween Animation is

defined as an animation which is used to Translate, Rotate, Scale and Alpha any type of view in

Android.

➢ Add the image in Figure 5.8 to the res/drawable folder and call it image as shown in Figure

5.9.

Figure 5.8 Tween Image

Figure 5.9 Showing drawable Directory

Page | 61

➢ In the res folder create a new Android Resource Directory as shown in Figure 5.10.

Figure 5.10 Creating Android Resource Directory Screen

Page | 62

➢ Change the Resource type to anim as show in Figure 5.11.

Figure 5.11 New Resource Directory Screen

➢ Create three Animation Resource File in the anim directory and call them rotate, scale and

translate as shown in Figure 5.12.

Figure 5.12 showing anim Directory

Page | 63

➢ In the activity_main layout makes the following design shown in Figure 5.13.

Figure 5.13 Component tree for Main Activity

➢ Add @drawable/image to the source compact when adding the image view as shown in

Figure 5.14.

Figure 5.14 Adding the Image to the imageView

Page | 64

➢ Making the rotate animation (writing the code to the rotate.xml)

• Make the duration for the animation 3 seconds.

• Make the rotation 360 degree.

• Make the x coordination and the y coordination 50% (to itself).

• The following code is for the rotation.

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android">

 <rotate

 android:duration="3000"

 android:fromDegrees="0"

 android:pivotX="50%"

 android:pivotY="50%"

 android:toDegrees="360" />

</set>

➢ Making the Scale animation (writing the code to the scale.xml)

• Make the duration for the animation 2 seconds.

• Make the scale zoom in by making fromXScale=1, fromYScale=1 to toXScale=3,

toYScale=3.

• Make the x coordination and the y coordination 50% (to itself).

• The following code is for the zoom in.

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android">

 <scale

 android:duration="2000"

 android:fromXScale="1"

 android:fromYScale="1"

 android:pivotX="50%"

 android:pivotY="50%"

 android:toXScale="3"

 android:toYScale="3"/>

</set>

Page | 65

➢ Making the Translate animation (writing the code to the translate.xml)

• Make the duration for the animation 1 seconds.

• Make the translate in the x axis from 0% to 30% (to its parent view).

• The following code is for the translate.

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android">

 <translate

 android:duration="3000"

 android:fromXDelta="0%p"

 android:toXDelta="30%p" />

</set>

➢ In the MainAvticivty java make 3 buttons by connecting them to the three buttons in the

main activity layout.

➢ Make an ImageView object by connecting it the image view in the main activity layout.

➢ Make three setOnClickListeners to the three buttons and start the animation for each button

by calling startAnimation method and passing the AnimationUtils xml folder.

➢ The code below shows how to make the animation for the three buttons and the imageView.

➢ The output is shown in

Figure 5.15 Tween Animation Application

Page | 66

Button buttonRotate=(Button)findViewById(R.id.button_rotate);
Button buttonScale=(Button) findViewById(R.id.button_scale);
Button buttonTranslate =(Button)

findViewById(R.id.button_translate);
final ImageView imageView = (ImageView)
findViewById(R.id.imageView);
buttonRotate.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {

imageView.startAnimation(AnimationUtils.loadAnimation(MainActivity.t
his,R.anim.rotate));
 }

});

buttonScale.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {

imageView.startAnimation(AnimationUtils.loadAnimation(MainActivity.t
his,R.anim.scale));
 }

});

buttonTranslate.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {

imageView.startAnimation(AnimationUtils.loadAnimation(MainActivity.t
his,R.anim.translate));
 }

});

3.3. Try doing the following animations

▪ (You must know what the following code does)

➢ The first code

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

 android:fillAfter="true">

 <alpha

 android:duration="1000"

 android:fromAlpha="0.0"

 android:toAlpha="1.0" />

</set>

Page | 67

➢ The second Code

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/android"

 android:fillAfter="true"

 android:interpolator="@android:anim/linear_interpolator">

 <!-- Use startOffset to give delay between animations -->

 <!-- Move -->

 <translate

 android:duration="800"

 android:fillAfter="true"

 android:fromXDelta="0%p"

 android:startOffset="300"

 android:toXDelta="75%p" />

 <translate

 android:duration="800"

 android:fillAfter="true"

 android:fromYDelta="0%p"

 android:startOffset="1100"

 android:toYDelta="70%p" />

 <translate

 android:duration="800"

 android:fillAfter="true"

 android:fromXDelta="0%p"

 android:startOffset="1900"

 android:toXDelta="-75%p" />

 <translate

 android:duration="800"

 android:fillAfter="true"

 android:fromYDelta="0%p"

 android:startOffset="2700"

 android:toYDelta="-70%p" />

 <!-- Rotate 360 degrees -->

 <rotate

 android:duration="1000"

 android:fromDegrees="0"

 android:interpolator="@android:anim/cycle_interpolator"

 android:pivotX="50%"

 android:pivotY="50%"

 android:repeatCount="infinite"

 android:repeatMode="restart"

 android:startOffset="3800"

 android:toDegrees="360" />

</set>

4. Todo

This part will be given to you by the teacher assistant in the lab time

Page | 68

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 6. Singleton and Shared Preferences

1. Objectives

❖ Provide a simple knowledge of shared preferences in android.

❖ Introduce you for a new java concept about singleton classes.

❖ To provide the ability to save strings, integers, long, Boolean and other variable types that are

commonly used in the application.

2. Introduction

Sheard preferences is commonly used in any android application with will give the user

the ability to save the most used values in the application and any other setting locally on the

device. To use the shared preferences, we only need one object to write and reed the values locally,

so a singleton class is the perfect use for this.

Page | 69

2.1. Singleton Class in Java

In object-oriented programming, a singleton class is a class that can have only one object

(an instance of the class) at a time.

After first time, if we try to instantiate the Singleton class, the new variable also points to

the first instance created. So whatever modifications we do to any variable inside the class through

any instance, it affects the variable of the single instance created and is visible if we access that

variable through any variable of that class type defined. To design a singleton class:

• Make constructor as private.

• Write a static method that has return type object of this singleton class. Here, the

concept of Lazy initialization in used to write this static method.

Normal class and Singleton class. Difference in normal and singleton class in terms of

instantiation is that, For normal class we use constructor, whereas for singleton class we use

getInstance() method. In general, to avoid confusion we may also use the class name as method

name while defining this method.

Figure 6.1 singleton class attributes

In the Singleton class, when we first time call getInstance() method, it creates an object of

the class with name single_instance and return it to the variable. Since single_instance is static, it

is changed from null to some object. Next time, if we try to call getInstance() method, since

single_instance is not null, it is returned to the variable, instead of instantiating the Singleton class

again. This part is done by if condition.

Page | 70

2.2. Shared preferences

It is used by the application to save data in key-value pairs like Bundle. Data is stored in

XML file in the directory “data/data/<package name>/shared-prefs folder. Shared preferences only

allows you to save primitive data types (that is, Booleans, floats, longs, ints and strings).

➢ There are two methods to access shared preferences:

• getPreferences(int mode) : it is used if you have only 1 preference file.

• getSharedPreferences(String name , int mode): it is used if you have several files.

➢ The mode parameter can take several values:

• MODE_PRIVATE: Only your app can access the file.

• MODE_WORLD_READABLE: All apps can read the file.

• MODE_WORLD_WRITABLE: All apps can write to the file.

➢ You can use the following steps to store the data to a shared preference file

Figure 6.2 writing to the shared preferences

• Get a reference to the SharedPreferences object.

sharedPreferences = getSharedPreferences(SHARED_PREF_NAME,
Context.MODE_PRIVATE);

Page | 71

Where SHARED_PREF_NAME is a string constant of the name of the shared

preferences file.

• Call the editor by using SharedPreferences object.

SharedPreferences.Editor editor = sharedPreferences.edit();

• Use the editor to add the data with a key.

String key = "name";
String value = "Rajaie";
editor.putString(key,value);

• Commit editor changes.

editor.commit();

➢ You can use the following steps to read the data from a shared preference file

Figure 6.3 Reading From the Shared Preferences

• Get a reference to the SharedPreferences object.

sharedPreferences = getSharedPreferences(SHARED_PREF_NAME,
Context.MODE_PRIVATE);

• Use the key provided earlier to get data

String name = sharedPreferences.getString("name","noValue");

Note: getString method will return noValue if the data is not found.

Page | 72

3. Procedure

You will build an application that has two activities as shown in Figure 6.4, the first will

save a username and password in shared preferences and the second will load these values from

the shared preferences. You will access the shared preferences using singleton class called

SharedPrefManager.

Create a new project and call the project “Shared Preferences Application”, use empty

activity to the project, then create a new Activity call this one SecondActivity.

Figure 6.4 SharedPreferences Application Layouts

Page | 73

3.1. Creation of SharedPrefManager Singleton Class

Create a new java class in the main package of the project as shown in and call it

SharedPrefManager, this class will access the shared preferences for reading and writing. This

class will have the following

➢ Attribute that is called ourInstance that has a type of SharedPrefManager and initialed to

null and private.

➢ Attribute that is called sharedPreference that has a type of SharedPreferences and initiated

to null and private.

➢ Attribute that is called editor that is used for writing to the shared preferences has a type of

SharedPreferences. Editor and initiated to null and private.

➢ A private constructor which will initiate the sharedPreference and the editor.

➢ A static method called getInstance which will return ourInstance if its not null and if its

null (first time to initiate the object) it will create a new object of SharedPrefManager using

the private constructor and return it.

➢ Public method for writing to the sharedPreferences

➢ Public method for reading from the sharedPreferences

➢ Other constant values as the sharedPreference name, shared Preference access Modes etc…

The following code shows the singleton SharedPrefManager class with two method to

write and read string from the sharedPreferences

Figure 6.5 MainActivity Component Tree

Figure 6.6 SecondActivity Component Tree

Page | 74

import android.content.Context;

import android.content.SharedPreferences;

public class SharedPrefManager {

 private static final String SHARED_PREF_NAME = "My Shared Preference";

 private static final int SHARED_PREF_PRIVATE = Context.MODE_PRIVATE;

 private static SharedPrefManager ourInstance = null;

 private static SharedPreferences sharedPreferences = null;

 private SharedPreferences.Editor editor = null;

 static SharedPrefManager getInstance(Context context) {

 if (ourInstance != null) {

 return ourInstance;

 }

 ourInstance=new SharedPrefManager(context);

 return ourInstance;

 }

 private SharedPrefManager(Context context) {

 sharedPreferences = context.getSharedPreferences(SHARED_PREF_NAME,

SHARED_PREF_PRIVATE);

 editor = sharedPreferences.edit();

 }

 public boolean writeString(String key, String value) {

 editor.putString(key, value);

 return editor.commit();

 }

 public String readString(String key, String defaultValue) {

 return sharedPreferences.getString(key, defaultValue);

 }

}

3.2. Building the MainActivity Layout and the SecondActivity Layout

Build the layout activity_main as shown inFigure 6.4 (the component tree is shown in

Figure 6.5) and the activity_second layout as shown in Figure 6.4 (the component tree is shown in

Figure 6.6)

▪ Note that we used Constraint layout as the main layout (read about how to add

widgets to a Constraint layout press here Link to see a tutorial about constraint layouts.

https://www.youtube.com/watch?v=XamMbnzI5vE

Page | 75

3.3. Building the MainActivity Java Class

Get reference to the UserName and Password editTexts and the Save and

GoToSecondActivity Buttons you added in the activity_main layout.

Initate a SharedPrefManager by calling the static getInstance method. Make a listener to

the Save button and save the values from the editTexts to the sharedPreferences using the

writeString from the SharedPrefManager by passing the key (e.g. “username”) and the value from

the edit text.

Make a listener to the GoToSecondActivity and start the SecondActivity. The code below

is for the main Activity.

EditText editTextUserName;
EditText editTextPassword;
Button buttonSave;
Button buttonGoToSecondActivity;
SharedPrefManager sharedPrefManager;
Intent intent;
@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 editTextUserName = (EditText) findViewById(R.id.editTextUserName);
 editTextPassword = (EditText) findViewById(R.id.editText_password);
 buttonSave = (Button) findViewById(R.id.buttonSave);
 buttonGoToSecondActivity = (Button) findViewById(R.id.buttonGoToSecondActivity);
 sharedPrefManager =SharedPrefManager.getInstance(this);
 intent = new Intent(MainActivity.this,SecondActivity.class);

 buttonSave.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {

sharedPrefManager.writeString("userName",editTextUserName.getText().toString());

sharedPrefManager.writeString("password",editTextPassword.getText().toString());
 Toast.makeText(MainActivity.this, "Values written to shared Preferences",
Toast.LENGTH_SHORT).show();
 }

 });

 buttonGoToSecondActivity.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 startActivity(intent);
 finish();

 }

 });

}

Page | 76

3.4. Building the SecondActivity Java Class

Get reference to the UserName and Password TextViews and the Load and

BackToMainActivity Buttons you added in the activity_Second layout.Initate a

SharedPrefManager by calling the static getInstance method. Make a listener to the Load button

and Load the values from the sharedPreferences to the editTexts using the readString from the

SharedPrefManager by passing the key (e.g. “username”) and the defalt value. Make a listener to

the BackToMainActivity and start the MainActivity. The code below is for the Second Activity.

TextView textViewUserName;
TextView textViewPassword;
Button buttonLoad;
Button buttonBackToMainActivity;
SharedPrefManager sharedPrefManager;
Intent intent;
@Override

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);
 textViewUserName = (TextView) findViewById(R.id.textViewUserName);
 textViewPassword = (TextView) findViewById(R.id.textViewPassword);
 buttonLoad = (Button) findViewById(R.id.buttonLoad);
 buttonBackToMainActivity = (Button)
findViewById(R.id.buttonBackToMainActivity);
 sharedPrefManager=SharedPrefManager.getInstance(this);
 intent = new Intent(SecondActivity.this,MainActivity.class);
 buttonLoad.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {

textViewPassword.setText(sharedPrefManager.readString("userName","noValue"));

textViewUserName.setText(sharedPrefManager.readString("password","noValue"));
 }

 });

 buttonBackToMainActivity.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 startActivity(intent);
 finish();

 }

 });

}

4. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 77

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 7. Fragments

1. Objectives

❖ Introduce to new concept in Android Applications.

❖ Simplify code and reduce latency time.

2. Introduction

Tablet have larger display screen than small devices, so they can support multiple UI

panes/user behavior at the same time.

A Fragment represents a behavior or a portion of user interface in an Activity. You can

combine multiple fragments in a single activity to build a multi-pane UI and reuse a fragment in

multiple activities as shown in Figure 7.1.

Let us take Fragments application as an example application. It uses two activities, the first

one shows the titles of plays or characters and allows user to select one title as shown in Figure

7.2. The second one shows a quote from selected title as shown in the Figure 7.3.

Figure 7.1 Multiple Fragments in the Same Activity

Page | 78

Figure 7.2 First activity shows three titles

Figure 7.3 Second activity shows selected title

Figure 7.4 Two Fragments in One Activity

Page | 79

This interface is reasonable for a phone or small screen device, but it is inefficient on large

device. So, it is better to use two cooperating layout units on one screen as shown in Figure 7.4. In

Figure 7.4, the activity contains two fragments: first one shows three titles and second one shows

selected title information.

2.1. There are two general ways to add fragments to an activity:

➢ Declare it statically in the activity layout file

Attach the fragment inside the activity through XML using <fragment> tag

Example: to add FirstFragment in the main activity we can use the following XML

code in the layout of the main activity.

➢ Add it programmatically using the fragment manager

We will add the fragment to main activity using java. Every activity has its own

Fragment Manager, it maintains references to all fragments inside the activity. You can

get access to Fragment Manager throw getFragmentManager() method . You can use

findFragmentById() or findFragmentByTag() methods to get reference to a particular

fragment. Changes to UI in terms of adding, removing and replacing fragments are

conducted as Fragment Transactions. You must begin a transaction, then add, remove

or replace a fragment and finally you have to commit the transaction to see the effect

on your activity.

2.2. Inter fragment communication in android:

How to communicate between AFragment and BFragment without making a decencies

between the two fragments?

• Define an Interface in the BFragment class and implement it within the Activity.

Page | 80

• Implement the Interface: The activity that hosts AFragment and BFragment must

implement the interface defined in the BFragment class.

• The BFragment captures the interface implementation during its onAttach() or

onActivityCreated() lifecycle methods and can then call the Interface methods in order

to communicate with the Activity.

2.3. Fragment Transactions:

If you want to add, replace, remove, attach or detach a fragment, you have to use the

transactions by the following steps:

➢ get a new object from your fragment.

➢ beging the transaction by using beginTransaction method in the fragment manager.

➢ add/remove/replace/attach/detach the fragment.

➢ commit the transaction

3. Procedure

In this lab you will design two different applications, the first is to add two fragments and

make a communication between the fragments, where the second one is to how to add, remove,

attach, detach and replace fragments dynamically.

3.1. First Application

In this application we will have two fragments (FirstFragment and SecondFragment) where

the FirstFragment will send a string to the SecondFragment containing the number of times the

button in the first fragment is clicked and the SecondFragment will display the string in a text view

as shown in Figure 7.10. Create new project and change the application name to “Fragments

Communication Application”.

Page | 81

➢ Adding fragments

Add two fragments as shown in Figure 7.5 and call them FirstFragment and

SecondFragment as shown in Figure 7.6 and uncheck the include fragment factory methods? and

include interface callbacks? Check boxes then click on finish.

Figure 7.5 Adding Frsgment Screen

Figure 7.6 Fragment Android Component

Page | 82

When creating fragments, this will create a java class for the fragment and a layout as when

creating an activity, after creating the fragments the project folders should look as in Figure 7.7.

Figure 7.7 project classes and layouts

➢ Design the fragments layouts

• In the fragment_first layout start by adding a button and making the root layout height

to wrap_content. You also can change the background color of the root layout to dark

holo_green_dark by adding int following code to the root layout xml code.

android:background="@android:color/holo_green_dark"

• In the fragment_second layout start by adding a textview and making the root layout

height to wrap_content. You also can change the background color of the root layout to

dark holo_blue_light by adding int following code to the root layout xml code.

android:background="@android:color/ holo_blue_light"

Page | 83

the fragments should look as in Figure 7.8.a for the first fragment and Figure 7.8 for the

second fragment.

Figure 7.8.a First Fragment layout with button

Figure 7.8.b Second Fragment layout with textView

Figure 7.8 fragments layouts

➢ Adding fragments to the Main Activity

Convert the constraint layout into linear vertical layout and then add the following:

• Text view and change the text to “Main Activity”

• From the palette on the left side hand of the window choose <fragment> (drag and drop

the fragment to the activity_main layout). A fragment popup screen will show up,

choose the FirstFragment as shown in Figure 7.9. this will connect the added fragment

to the FirstFragment. Change the id to fragment1.

• Repeat the previous step for the SecondFragment. Change the id to fragment2

Figure 7.9 adding Fragment screen

Page | 84

❖ Making the communication between the fragments

➢ Define an Interface in the SecondFragment class and implement it within the Activity.

• In the second fragment java class make an interface and call it communicator.

• Add an abstract method in the communicator and call it respond. This method will be

implemented in the Main activity, this method will take a string to be displayed in the

text view. As shown in the following code.

• Inside SecondFragment class, define a method to display the data on a Text View. As

shown in the following code.

interface communicator {
 public void respond(String data);
}

public void changeData(String data){
 TextView textView = (TextView) getActivity().findViewById(R.id.textView);
 textView.setText(data);

}

➢ Implement the Interface: The activity that hosts FristFragment and SecondFragment must

implement the interface defined in the SecondFragment class.

• Implement the SecondFragment.communicator in the main activity.

• Override the respond method in the Main activity.

• Get a reference to the second fragment from the layout.

• Call the change data method in the second fragment.

• The following code shows the override respond method in the main activity.

@Override

public void respond(String data) {
 SecondFragment secondFragment =

(SecondFragment)getSupportFragmentManager().findFragmentById(R.id.fragment2);
 secondFragment.changeData(data);

}

Page | 85

➢ Calling the respond method from the FirstFragment

• In the first fragment override the onActivityCreated method

• Make an instance of the Second Fragment communicator

• Add a click Listener to the button

• And send the text containg the number of times the button has been clicked to be

displayed in the SecondFragment

• The following code shows the First Fragment onActivityCreated method.

@Override

public void onActivityCreated(@Nullable Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 final SecondFragment.communicator communicator =
(SecondFragment.communicator)getActivity();

 Button button = (Button) getActivity().findViewById(R.id.button);
 final int[] i = {0};
 button.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 i[0]++;

 communicator.respond("the button is clicked "+ i[0] +" times");
 }

 });

}

Figure 7.10 Fragment communication Application

Page | 86

3.2. Second Application

You will design an application that can add, remove, attach, detach and replace fragments

using fragment transaction. These will be done dynamically in the java code of the main activity.

Figure 7.11 shows the design of the application before and after adding the fragments.

Start by creating a new project and change the name of the project to “Fragments

Transaction Application”. Add two Fragments (FirstFragment and Second Fragment) as we did in

the previous section and add a text view in each fragment and change the text of each one to

indicate the fragment name (e.g. text view in the First fragment change the text to “This Is The

First Fragment”). Also change of the root layout for each fragment layout. The code below shows

the FirstFragment Layout.

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 tools:context=".FirstFragment"

 android:background="@android:color/holo_green_dark">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="This Is The First Fragment"

android:textAppearance="@style/TextAppearance.AppCompat.Display2" />

</FrameLayout>

➢ We will show how to make a transaction for adding a fragment and you should do the

remove, attach, detach and replace.

➢ To add a fragment dynamically you will use fragment manager to make a fragment

transaction to add a new fragment and after you finish you should commit the transaction

you made. The code below shows how to add a the FirstFragment when clicking on a

button.

Page | 87

Button buttonAddF = findViewById(R.id.add_f);
final FirstFragment firstFragment = new FirstFragment();
final FragmentManager fragmentManager = getSupportFragmentManager();

buttonAddF.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View view) {
 FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

 fragmentTransaction.add(R.id.root_layout, firstFragment, "FristFrag");
 fragmentTransaction.commit();

 }

});

Figure 7.11 before adding the fragments

Figure 7.11 after adding the fragments

Figure 7.11 Second application Layout

4. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 88

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 8. Integrating REST API into Android Application

1. Objectives

❖ Integrate Android apps with RESTful web services.

❖ How to access data from RESTful web services using simple GET and POST requests.

❖ How to parse JSON object to java object.

2. Introduction

REST describes a set of architectural principles by which data can be transmitted over a

standardized interface (such as HTTP (Hyper-Text Transfer Protocol)). The acronym REST

(Representational State Transfer), this basically means that each unique URL is a representation

of some object.

 Exposing a system’s resources through a RESTful API is a flexible way to provide

different kinds of applications with data formatted in a standard way.

All the user interface actions are managed by the main thread, so you should not block this

thread by a process needs a few of seconds to be executed. If you do that, the UI components will

freeze, and you will receive ANR (application not responding) error. One of the ways to solve this

error is using AsyncTask class.

Page | 89

 AsyncTask is an abstract class which allows you to perform long/background operations

and show its result on the main thread.

To integrate an Android app with a RESTful web service, you'll need to make calls over

the network. You can choose from a few different HTTP clients, some that are included with the

Android SDK, and some open-source libraries that are available from various organizations.

 HttpURLConnection: It is an abstract class used to send and receive data over the web .It

is included in Android SDK.

 To find any resource you need on the Internet, you can use the URL (Uniform Resource

Locator) class. The constructor of this class takes string parameter of the following structure:

protocol://host:port/path (E.g.: (http://www.mocky.io/v2/5cbc5efb320000641080d86b))

In this experiment, we will request the API from the server using HttpURLConnection

class. So we will build a simple android application to get a JSON object from the server .We will

parse the JSON to java object using JSONObject class. Finally, we will print the data in a textview

component. In this experiment we will get a JSON of the following structure:

[

 {

 "name": "",

 "age": "",

 "id": ""

 }

]

3. Procedure

➢ Designing the Main Activity Layout

Create a new Project and call it “REST Application”, create the basic UI and application

structure. This application will consist of one activity (Main Activity) to get the data from the

server, and to display the results. To implement the UI of the application, you will use the

layout_main so that we can arrange our components. You will use the constraint layout for the

design as shown in Figure 8.1, the code below shows xml file of the main activity.

http://www.mocky.io/v2/5cbc5efb320000641080d86b)

Page | 90

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Main Activty"

android:textAppearance="@style/Base.TextAppearance.AppCompat.Display3"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="0.1" />

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="160dp"

 android:layout_marginEnd="8dp"

 android:text="Get Data"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <LinearLayout

 android:id="@+id/layout"

 android:layout_width="395dp"

 android:layout_height="507dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="32dp"

 android:layout_marginEnd="8dp"

 android:layout_marginBottom="8dp"

 android:background="@android:drawable/gallery_thumb"

 android:orientation="vertical"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/button"></LinearLayout>

 <ProgressBar

 android:id="@+id/progressBar"

 style="?android:attr/progressBarStyle"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="8dp"

 android:layout_marginEnd="8dp"

 android:layout_marginBottom="8dp"

 android:visibility="gone"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="0.62" />

</android.support.constraint.ConstraintLayout>

Page | 91

Figure 8.1 REST Application Layout

➢ Creating Model class and Jason to Array List class:

Getting the data from the URI will return a Json array which we will paras this array into

Array list using a special class. So, we will need a class to present the Json Object and a class to

paras the Json Array into Array List

• Model Class

You will create a class which will have the same attributes as the Json Object has.

Name this class “Student”. This class will have 3 attributes:

private int ID

private String name

private Double age

Create two constructors (empty and with attributes) for this class. Then create setters

and getters for all attributes.

Override toString method as we did in EXP. No. 2 sec 3.2 the following code shows

the Student class.

Page | 92

public class Student {
 private int ID;
 private String name;
 private Double age;

 public int getID() {
 return ID;
 }

 public void setID(int ID) {
 this.ID = ID;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Double getAge() {
 return age;
 }

 public void setAge(Double age) {
 this.age = age;
 }

 @Override

 public String toString() {
 return "Student{" +
 "\nID= " + ID +
 "\nname= " + name +
 "\nage= " + age +
 +'\n'+'}'+'\n';
 }

}

• Json To Model Class

Create a new class and call it “StudentJasonParser” this class will convert the Json

object we got from the REST API to Array List of the type Student. The following

code shows how to convert the JSON List int Array List.

Page | 93

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import java.util.ArrayList;
import java.util.List;

public class StudentJasonParser {

 public static List<Student> getObjectFromJason(String jason) {
 List<Student> students;

 try {
 JSONArray jsonArray = new JSONArray(jason);
 students = new ArrayList<>();
 for (int i = 0; i < jsonArray.length(); i++) {
 JSONObject jsonObject = new JSONObject();
 jsonObject = (JSONObject) jsonArray.get(i);

 Student student = new Student();
 student.setID(jsonObject.getInt("id"));
 student.setName(jsonObject.getString("name"));
 student.setAge(jsonObject.getDouble("age"));

 students.add(student);

 }

 } catch (JSONException e) {
 e.printStackTrace();

 return null;
 }

 return students;
 }

}

➢ HTTP manager Class

Add a new Java Class and call it “HttpManager”, this class is responsible for requesting a

Http request to get the Json Array from the URL we will pass to this class. you are now

going to implement the REST API call. Add the getData method which is called in

doInBackground method. This will first create a URL based on the string that is passed

into the method. It will next open the connection and create a BufferedInputStream to

receive the results from the call. The code below is for the HttpManager class.

Page | 94

import android.util.Log;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

public class HttpManager {

 public static String getData(String URL) {
 BufferedReader bufferedReader = null;
 try {
 URL url = new URL(URL);
 HttpURLConnection httpURLConnection =

(HttpURLConnection) url.openConnection();

 bufferedReader = new BufferedReader(new
InputStreamReader(httpURLConnection.getInputStream()));

 StringBuilder stringBuilder = new StringBuilder();
 String line = bufferedReader.readLine();

 while (line != null) {
 stringBuilder.append(line + '\n');
 line = bufferedReader.readLine();

 }

 return stringBuilder.toString();
 } catch (Exception ex) {
 Log.d("HttpURLConnection", ex.toString());
 }

 return null;

 }

}

➢ Invoking the API call

You will be making the API call in a separate thread, which is always a good practice since

the user interface will not be blocked while the call is being made. This is especially important in

mobile devices that may drop network connections or experience high network latency. To

accomplish this, you will implement an AsyncTask class. We should add a new class called

ConnectionAsyncTask. We will override three methods, onPreExecute()

doInBackground(String... params) and onPostExecute(String s). onPreExecute is exexuted at first

before starting excecuting the doInBackground in the context of the UI thread. On the other hand

the doInBackground executes in a separate thread so we will call the REST API and parse the

results in this thread. onPostExecute executes in the context of the UI thread so we will use this

method to display the results. We can access the UI components in methods that work in UI thread.

Page | 95

So, we should show/hide the ProgressBar in these two methods. The code below shows the

ConnectionAsyncTask class code.

import android.app.Activity;
import android.os.AsyncTask;

import java.util.List;

public class ConnectionAsyncTask extends AsyncTask<String, String,
String> {

 Activity activity;

 public ConnectionAsyncTask(Activity activity) {

 this.activity = activity;
 }

 @Override

 protected void onPreExecute() {

 ((MainActivity) activity).setButtonText("connecting");
 super.onPreExecute();
 ((MainActivity) activity).setProgress(true);
 }

 @Override

 protected String doInBackground(String... params) {

 String data = HttpManager.getData(params[0]);

 return data;
 }

 @Override

 protected void onPostExecute(String s) {
 super.onPostExecute(s);
 ((MainActivity) activity).setProgress(false);
 ((MainActivity) activity).setButtonText("connected");
 List<Student> students =

StudentJasonParser.getObjectFromJason(s);

 ((MainActivity) activity).fillStudents(students);

 }

}

Page | 96

➢ Implementing the Main Activity

In main activity we will get reference to the button and the root layout. The event handler

of this button creates a new object of Connection AsyncTask class so that we connect to the server

asynchronously, also we will make a method which will displays the users from array list. which

will be called in the onPostExcecute method in the ConnectionAsyncTask class. The code below

is for the MainActivity.

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.LinearLayout;
import android.widget.ProgressBar;
import android.widget.TextView;

import java.util.List;

public class MainActivity extends AppCompatActivity {
 Button button;
 LinearLayout linearLayout;

 @Override

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 setProgress(false);

 button = (Button) findViewById(R.id.button);
 button.setOnClickListener(new View.OnClickListener() {
 @Override

 public void onClick(View v) {
 ConnectionAsyncTask connectionAsyncTask = new
ConnectionAsyncTask(MainActivity.this);

connectionAsyncTask.execute("http://www.mocky.io/v2/5b4e6b4e3200002c
009c2a44");
 }

 });

 linearLayout = (LinearLayout) findViewById(R.id.layout);

 }

 public void setButtonText(String text) {
 button.setText(text);
 }

 public void fillStudents(List<Student> students) {
 LinearLayout linearLayout = (LinearLayout)

findViewById(R.id.layout);

Page | 97

 linearLayout.removeAllViews();

 for (int i = 0; i < students.size(); i++) {
 TextView textView = new TextView(this);
 textView.setText(students.get(i).toString());

 linearLayout.addView(textView);

 }

 }

 public void setProgress(boolean progress) {
 ProgressBar progressBar = (ProgressBar)

findViewById(R.id.progressBar);
 if (progress) {
 progressBar.setVisibility(View.VISIBLE);
 } else {
 progressBar.setVisibility(View.GONE);
 }

 }

}

➢ Adding the internet Permission

In android, to give your application the ability to use internet, special permission should be

added in the manifest.xml file, open that file and add the following code before the application tag

<uses-permission android:name="android.permission.INTERNET"></uses-permission>

➢ For API more than 28

• By default, the Http requests are disabled due to low security. And since we will make

a Http request, you should enable this.

• To Enable Http requests add a new resource directory by right clicking on the res

director and add new Android Resource Directory as shown in Figure 8.2. Then change

the Resource Type in the new Resource Directory Screen to xml as shown in Figure

8.3.

• In the new xml Directory add a new Android Resource File and call it

network_security_config and add the code below in this file.

Page | 98

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

 <base-config cleartextTrafficPermitted="true">

 <trust-anchors>

 <certificates src="system" />

 </trust-anchors>

 </base-config>

</network-security-config>

Figure 8.2 Adding new Resource Directory

Figure 8.3 New Resource Directory Screen

Page | 99

• In the Manifest File and in application header set the networkSecurityConfig to the file

we added.

android:networkSecurityConfig="@xml/network_security_config"

the output of the Application is shown in Figure 8.4

Figure 8.4.a Before Clicking

the Button

Figure 8.4. While Fetching the

Data form the URL

Figure 8.4.c After Fetching the

Data and Displaying it

Figure 8.4 REST Application Output

4. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 100

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 9. Spring Boot Part 1

1. Requirements

❖ Knowledge of the java programming language

❖ Basic Understanding of MVC (Model View Controller) architecture

❖ Basic Knowledge of Maven tool

❖ Basic Idea about Spring framework (preferably Spring MVC)

❖ Knowledge of java ORM (Object Role Modeling) models is extremely helpful but not required

❖ Spring Tool Suite software (STS) (For windows 64-bit download this Link)

❖ Postman software (For windows 64-bit download this Link)

2. Objectives

❖ Understanding the fundamentals of Spring Boot framework

❖ Create rest services using Spring MVC

3. Introduction

Spring is an enterprise java framework which lets you write enterprise java applications,

spring framework is widely used due to It’s useful features , spring strongly introduces the concept

of inversion of control specifically dependency injection which helps you wire your associations

in a way which reduces the dependency between the entities.

https://download.springsource.com/release/STS/3.9.8.RELEASE/dist/e4.11/spring-tool-suite-3.9.8.RELEASE-e4.11.0-win32-x86_64.zip
https://dl.pstmn.io/download/latest/win64

Page | 101

Spring boot was introduced to make creating spring applications easier, spring boot was

built above Spring MVC, Spring MVC is a java MVC framework which helps you build MVC

architecture using defined features, It wires up all the MVC components in a nice way which helps

developers develop flowless and easily tested scenarios.

Spring Boot makes it easy to create stand-alone, production-grade based Applications that

you can simply run without even the need of servlet container, also Spring Boot contains default

configuration which probably will be enough for most of the cases which makes it easy to start

development without the need to diving into complex configurations (as in Spring , Spring MVC),

also being stand-alone with embedded servlet container means the configuration of the server are

the embedded with the application configurations, which makes it easier to deploy in different

machines without worrying about configuring the servlet container.

Keep in mind that spring boot mainly bootstrap the development of spring MVC projects

so actually spring MVC will be the one getting the job done.

4. Procedure

4.1. Downloading and running the STS software

After downloading the STS software, extract the downloaded file as in Figure 9.1, and run the

software in

spring-tool-suite-3.9.8.RELEASE-e4.11.0-win32-x86_64>sts-bundle>sts-3.9.8.RELEASE>STS.exe

as shown in Figure 9.2. the software panels are shown as in Figure 9.3.

Page | 102

Figure 9.1 Extracting STS software

Figure 9.2 STS software

Page | 103

Figure 9.3 STS software panels screen

4.2. Setup Spring Boot Project

Spring boot aims to bootstrap the development of spring MVC application, spring project

suffers of complex configurations which spring boot solves in a very nice way. There are many

ways to create a spring boot project, we will introduce one way but keep in mind this is not the

only way and not the best, it depends on the taste of developer and the environment you are

working on.

➢ STS (Spring Tool Suite):

You can use spring tool suite to create spring boot application in simple steps.

• Creating new Spring Boot starter Project as shown in Figure 9.4.a and Figure 9.4.b.

• After choosing Spring Boot starter Project a new screen as shown in Figure 9.5 will

appear. Change the name of the application to “FirstApplication”. Make sure all other

attributes are as shown in Figure 9.5.a The click next

• Search for web in the search slot and add the web dependency for the application as

shown in Figure 9.5.b. Then click finish.

Page | 104

Figure 9.4.a New Other Project

Figure 9.4.b New Spring Starter Project

Figure 9.4 Creating New SpringBoot Project

Figure 9.5.a Application name and other

attributes

Figure 9.5.b Application dependencies

Figure 9.5 New Spring Starter Project Screen

Page | 105

4.3. Create Project Structure

As we mentioned before spring boot is just an upper framework built above Spring MVC

so spring MVC will do all the work, to start building our application we need to build a structure

for our MVC components, there are many structures and trends to build MVC application, in this

walk through we are aiming to build RESTful API’s without worrying about the views.

REST (Representational state transfer): briefly is a standard of communication between

client and server using textual representation of the resources using http stateless (each request

does not know about the other request) requests, resources are presented using text wrapped inside

http message, each resource is defined by URL and operations are defined through sub URL’s and

https methods (Post for create new, Put for update, Get for getting resources, Delete for delete

resources and others -search for them-). In Spring MVC you will have multi layers as:

➢ Controllers will play the role of the rest api’s, business logic will not be included in

controllers instead it will be wrapped in another layer called business services to keep the

controllers layer as thin as possible, controllers will be mapped by URL’s to access

methods inside the controller.

➢ Services are the layer which contains most of the business logic, services will be injected

inside controllers to be used when URL’s mapped by controllers are accessed, services are

by default singleton, which means whenever trying to instantiate the service you will get

the same object, this is useful as the transfer of state between all the components is

guaranteed, though it introduces a risk with multithreading systems which requires using

thread safe operations.

➢ Models layer will contain our entities which represents the resources in our system.

You will create for packages under the demo package calling them (Controllers, Services

and Models as shown in Figure 9.6.

Page | 106

Figure 9.6 Adding Project Packages

➢ Models

Models are the entities of our application, in this walk through we will be implementing a

User entity which has a name, a username and an email, models in spring boot basically are normal

classes, so in models package go ahead and create a class User and add its attributes. Notice that

all attributes should be private and should be accessed using accessors (getters and setters) to

follow encapsulation standards.

Page | 107

package com.example.demo.models;

public class User {

 private String name;
 private String userName;
 private String email;

 public User() {
 super();
 // TODO Auto-generated constructor stub
 }

 public User(String name, String userName, String email) {
 super();
 this.name = name;
 this.userName = userName;
 this.email = email;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getUserName() {
 return userName;
 }

 public void setUserName(String userName) {
 this.userName = userName;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 @Override

 public String toString() {
 return "User [name=" + name + ", userName=" + userName +
", email=" + email + "]";

 }

}

➢ Services

Services will take care of most of the job, they will be called by controllers and used to get

or manipulate data, in services package create UserService class.

Page | 108

You can notify spring about service using “@Service” annotation, remember that spring

will take care of initializing all predefined components so you will not need to initialize service

manually or apply singletone constraints.

For now, let us create a static list containing users’ data (later we will get this data from

database), then create a method which returns this list.

package com.example.demo.services;

import java.util.ArrayList;
import java.util.Arrays;

import org.springframework.stereotype.Service;

import com.example.demo.models.User;

@Service

public class UserService {

 private ArrayList<User> userList = new
ArrayList<User>(Arrays.asList(

 new User("Rajaie","rajaie111","Rajaie@gamil.com"),
 new User("moath","moath111","m@hotmail.com")
));

 public ArrayList<User> getUserList() {
 return this.userList;
 }

}

➢ Controllers

Controllers are the API’s access when requesting a URL, to create a controller in packages

controllers create a class UserController. To tell spring that your class is a controller you need to

annotate it with “@RestController” annotation, when application starts spring will register classes

annotated with this annotation as controller, this annotation in addition to define a controller tells

spring that this controller is following rest standard which means a textual response will be

returned instead of object. To direct the request made to a URL you need to map each URL to a

method in a controller, this is done using annotation “@RequestMapping”, by providing the URL

to this annotation method will be executed and the returned object/List of objects will be parsed (

by default) to JSON using a built in library(JACKSON).

Page | 109

package com.example.demo.controllers;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController

public class UserController {

 @RequestMapping("/users")

 public String getAllUsers() {
 return "hello";
 }

}

The project packages and classes should look like as in Figure 9.7

Figure 9.7 project packages and classes

Run the application by clicking right click on the main project package and choose “Run

as” > “Spring Boot App” as shown in Figure 9.8.

Page | 110

Figure 9.8 Run Spring Boot Application

When requesting localhost:8080/users on any web browser this api will return hello (String

will not be parsed to JSON for sure) as shown in Figure 9.9.

Figure 9.9 Web Browser request

In a normal way controllers use services so we need a reference for our user service in the

controller, on the startup of the application spring will initialize the singletone service bean (if you

do not know what beans are please do some reading about spring beans) so we do not need to

initialize service, we can wire the service to our controller using “@Autowired” annotation which

wires the service bean to the reference defined in our controller.

@Autowired

UserService service;

Page | 111

That is all what we need to use UserService, so now we can use the user service to return

all the user data by calling getUserList method we created in the UserService class.

package com.example.demo.controllers;

import java.awt.List;
import java.util.ArrayList;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.example.demo.models.User;
import com.example.demo.services.UserService;

@RestController

public class UserController {

 @Autowired

 UserService service;

 @RequestMapping("/users")

 public ArrayList<User> getAllUsers(){
 return service.getUserList();
 }

}

Run the application as mentioned above and if you try to access localhost:8080/users you

will get a JSON array representing all the users as shown in Figure 9.10.

Figure 9.10 Web Brouser Request for all users

This request is GET request, without specifying the HTTP method of a specific URL all

requests will come to our getAllUsers() method, you can try to do a post request using PostMan

Extension in chrome and you will get the same response.

Page | 112

To Specify a different method for POST, PUT you can pass a parameter to the

“@RequestMapping” annotation defining the method using a predefined enumeration in spring.

@RequestMapping(method=RequestMethod.POST, value="/users")
 public boolean addUser(@RequestBody User user) {

 }

URL is passed use value keyword, to receive the object to be created you need to get it

using “@RequestBody”, this annotation will tell spring to map the payload json included in the

request body to the Entity User and create object user.

To add the user to the array list which is in the UserService we create a method that adds a

user to the arraylist in the UserService class.

public boolean addUserToUserList (User user) {
 return userList.add(user);
 }

Then in the UserController class in tha addUser method we call this method that adds the

user to the array list.

@RequestMapping(method=RequestMethod.POST, value="/users")
 public boolean addUser(@RequestBody User user) {
 return service.addUserToUserList(user);
 }

After running the application as mentioned above we can test the application using the

PostMan software.

• Create a get method and add the “http://localhost:8080/users” URL to this request. This

is for getting all users since it is a get method

http://localhost:8080/users

Page | 113

Figure 9.11 PostMan Request for all users

• Create a Post Method that will add a user to the ArrayList using PostMan software, the

user to be inserted will be in the body of the request. So click on the body button in

the PostMan Software and choose raw, change the input from text to JSON

(application/json) and insert the new user we want to add as a json object, this is shown

in Figure 9.12.

{

 "name": "newUser",

 "userName": "newUser111",

 "email": "newUser@gamil.com"

}

Page | 114

Figure 9.12 PostMethod to Add User

After we click on Send a true value must be returned indicating that the user was added

successfully as shown in. We can test if the user is added by calling the get method for getting all

users as shown in Figure 9.14.

Figure 9.13 User was Added Successfully

Page | 115

Figure 9.14 Get All Users with the New User

When delete a resource we usually specify the identifier of the resource to be deleted in

the URL, for example if we want to remove an object and its identifier is “test” then the URL will

be “localhost:8080/users/test” and the method will be DELETE, In our controller we can specify

mapping for “users/test” but this will not be practical as we will need a mapping for each object

we have, instead we can tell spring that “test” is a variable using “@PathVariable” annotation,

value between {} will be stored in name variable.

 @RequestMapping(method=RequestMethod.DELETE,value="/users/{userName}")
 public boolean deleteUser(@PathVariable String userName) {
 //delete with username from the UserService arrayList

 }

To do a PUT (update) we usually send the updated object in the payload JSON and the

identifier of the object as a path variable

@RequestMapping(method = RequestMethod.PUT, value="/users/{userName}")
 public boolean updateUser(@RequestBody User user,@PathVariable

String userName) {

 //update with username in the UserService arrayList

 }

Page | 116

So for now we walked through the basic api’s in spring MVC and we saw how easily we

built the application using spring boot, for now we can manipulate in memory data, data is not

persisted yet which means if you restart the application all updated on data will be removed, in

Next experiment we will walk through spring data jpa which is a framework to support persisting

our java object in database so we will have a serialized data, also we will take a look at deployment

the spring boot application using the built in servlet container and using an external servlet

container (Tomcat).

5. Todo

This part will be given to you by the teacher assistant in the lab time.

Page | 117

Birzeit University

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Advance Computer Systems Engineering Lab ENCS515

EXP. No. 10. Spring Boot Part 2

1. Requirements

❖ Knowledge of the java programming language

❖ Basic Understanding of MVC (Model View Controller) architecture

❖ Basic Knowledge of Maven tool

❖ Basic Idea about Spring framework (preferably Spring MVC)

❖ Basic Knowledge of relational databases (like MYSQL)

❖ Knowledge of java ORM (Object Role Modeling) models is extremely helpful but not required

❖ Spring Tool Suite software (STS) (For windows 64-bit download this Link)

❖ Postman software (For windows 64-bit download this Link)

❖ MYSQL server/Workbench (For windows 64-bit download this Link)

2. Objectives

❖ Understanding the fundamentals of Spring Data JPA framework

❖ Create mapping between java models and relational database models

❖ Connect and perform CRUD operations to MYSQL database using Spring Data JPA

framework

https://download.springsource.com/release/STS/3.9.8.RELEASE/dist/e4.11/spring-tool-suite-3.9.8.RELEASE-e4.11.0-win32-x86_64.zip
https://dl.pstmn.io/download/latest/win64
https://dev.mysql.com/get/Downloads/MySQLGUITools/mysql-workbench-community-8.0.16-winx64.msi

Page | 118

3. Introduction

➢ ORM

ORM (Object relational mapping) is a technique to convert data between models within

object-oriented languages to serialized data to be stored (In relational database in our case). ORM

models presents many advantages, the main advantage is the decoupling to the database connector,

databases queries vary between one another, so ORM takes care of this difference.

➢ JPA

JPA (Java Persistence API) is a specification or standard which provides java developers

with ORM to manage relational database (map entity classes to sql tables), after configuring the

mapping it’s sent to some framework to handle it.

➢ Spring Data JPA

Spring Data JPA will be the framework to handle the mapping as we mentioned, it basically

helps implementing repositories to retrieve and manipulate data in database. Spring Data JPA is

built on top of Hibernate, hibernate is a very commonly used framework for ORM in java.

4. Procedure

Go through EXP. No. 9 Spring Boot Part 1 experiment steps 4.1 and 4.2 above and create

a new project.

4.1. Adding Dependencies:

To run this application, we will use new dependencies as the JPA dependence and the

MySQL dependency. These dependencies have some functions which will help us reduce the code

and simplifies it.

Page | 119

➢ JPA Dependency

As we saw for Spring MVC Spring Boot gives us a meta dependency which is wrapper for

all the dependencies we need for Spring Data JPA, to add the dependency go to pom.xml file and

add the following dependency. This dependency contains all you need to create the needed

repositories.

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

➢ MYSQL Dependency

This dependency will help us connecting and accessing the data base to add this

dependency go to pom.xml file and add the following dependency.

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>

After adding the dependencies, the pom.xml file will be as shown in the following code.

Page | 120

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.3.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.example</groupId>
 <artifactId>DataBase</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>DataBase</name>
 <description>Demo project for Spring Boot</description>

 <properties>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

Page | 121

4.2. Configurations

We need some configuration for Hibernate (which JPA is built in top of) along with

configuration to connect to database, keep in mind that spring Boot went far to provide an

embedded database for development purposes, but this will not work for production purposes.

Configurations are set in src/main/resources/application.properties file we saw in the

previous experiment, these configuration will be per database, which means configurations will

change if the database changes and most likely this will be the only change, compared to JDBC

templates this a big jump for database abstraction.

Figure 10.1 Application Properties

server.port=8081
spring.datasource.url=jdbc:mysql://localhost:3306/MyDB?useSSL=false
spring.datasource.username=databaseName
spring.datasource.password=databasePass
spring.jpa.hibernate.ddl-auto=update
spring.jpa.hibernate.naming-strategy=org.hibernate.cfg.ImprovedNamingStrategy
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MySQL5Dialect

Page | 122

➢ server.port: this property overrides the default port Spring Boot will run on (8080).

➢ spring.datasource.url: this will be the url for the database connection.

➢ *useSSl=false: is used to disable SSL connection since database will be running on the

same machine, in case database is running on different machine we need to configure

certificate for both sides.

➢ spring.datasource.username: the username for the database(locally or in different machine)

➢ spring.datasoruce.password: the password for the database.

➢ spring.jpa.hibernate.ddl-auto: this option tells hibernate to recreate the database on each

run, for production purposes we usually use update does not create.

➢ spring.jpa.hibernate.naming-strategy: this will define the default name strategy of the

database tables and columns.

➢ spring.jpa.properties.hibernate.dialect: this defines the language which will be uses to talk

to database.

4.3. ORM mapping:

The idea of JPA is to create mapping which makes it possible to convert java model to

relational model, in this experiment we will take a quick look at the mapping using annotation

based configuration, many enterprise application use xml based configuration but annotation is the

new trend and most of the new projects are trying to eliminate the use of xml configurations. The

structure of the project will be as in 4.3. In this project we will add a new package called

repositories in the com.example.demo package.

➢ Models and Tables:

 Tables

In ORM classes are mapped to database table, this is achieved using @Entity annotation

on the class definition.

Page | 123

 Id

Relational databases assign a primary key to each record in which it will be identified by,

Spring data JPA uses the primary key to realize if a record needs to be added or updated, to specify

a primary key we use @Id annotation, this annotation applies primary key to the attribute

annotated, this applies not-null and unique constraints as well.

Primary keys are usually auto generated, there are many ways to generate them, here for

simplicity we will be using auto increment for simplicity, we use @GeneratedValue(strategy =

GenerationType.AUTO) , this strategy is by default set.

 Columns

Columns by default are scanned and persisted by JPA, we can use @Column annotation to

apply more specific properties, we can specify the name of the column, the uniqueness and the

ability to be null. To avoid persisting a column in the database table we can use @Transiet to tell

JPA to ignore a specific attribute.

 User Class

 In this walk through we will be implementing a User entity which has an Id and User

Name, the Id is the main key which will be generated automatically, models in spring boot

basically are normal classes, so in com.example.demo.models package go ahead and create a class

User and add its attributes. Notice that all attributes should be private and should be accessed using

accessors (getters and setters) to follow encapsulation standards.

Page | 124

package com.example.demo.models;

import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.*;

@Entity
@Table(name = "users")
public class User {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column (name="user_id")
 private Integer id=null;

 @Column(nullable = false, unique = true)
 private String userName;

 public User(Integer id, String userName) {
 super();
 this.id = id;
 this.userName = userName;
 }

 public User() {
 super();
 // TODO Auto-generated constructor stub
 }

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public String getUserName() {
 return userName;
 }

 public void setUserName(String userName) {
 this.userName = userName;
 }

}

Page | 125

➢ JPA repositories

JPA introduces interface-based models for accessing the database, implementation is not

required, all we need is to create custom repositories interfaces and extend predefined interfaces

provided by Spring data JPA to be able perform operations on database. will create a repository

interface for user, this interface should extend a repository interface in JPA, we can extend

CrudRepository or JpaRepository. JpaRepository provides additional functionality including

pagination, yet if you are going to need only simple CRUD operations then CrudRepository is

recommended to keep the separate of concerns.

Creating repository interface is simple, we only need to create an interface in the

com.example.demo.repositories as shown in Figure 10.2 and extends one of the spring jpa

repositories, for user we will create UserRepository as shown in the code below.

JpaRepository takes generic types, the first type is the entity which is User in our case, the

second one is the type of the id, in our previous demonstration of the mapping relation we specified

the type of the id to be int which is a primitive data type, JpaRepository requires the type to be

serializable, for that we can use Long or Integer which are wrapper classes for the primitive types

long and int, so we will need to change the type in the entity also to Integer.

Figure 10.2 User Repository

package com.example.demo.repositories;

import org.springframework.data.jpa.repository.JpaRepository;

import com.example.demo.models.User;

public interface UserRepository extends JpaRepository<User, Integer> {

➢ }

Page | 126

➢ Service

Just that simple we have a DAO layer now, in the previous experiment we discussed that

service layer should take care of controlling the DAO, so we need to inject our created DAO to

the service. Spring JPA will take care of initializing the DAO, so we only need to wire it to our

service, note that no need for any XML definition or annotation for the interface to be marked as

a bean, extending the JPA/CRUD repositories is enough. You will create a UserService class in

the com.example.demo.services package you created, and make an object of the repository you

created, this interface is connected to the database which allows to perform queries on the database.

Don’t forget to add the @autowired annotation before creating the repository object and @Service

before the class definition to notify spring about service as shown in the following code.

package com.example.demo.services;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import com.example.demo.repositories.UserRepository;

@Service
public class UserService {

 @Autowired
 UserRepository userRepository;
}

Now we can add a new methods to get all users and add a user to the database using the

UserRepository object by using findAll and save method respectively. Don’t forget to import the

User class. These methods will be used by the controller which will be created next.

import com.example.demo.models.User;

public List<User> getAll() {
 return userRepository.findAll();
}
public String addUser(User user) {

 userRepository.save(user);
return "success";

 }

Page | 127

➢ Controller (APIs)

In a normal way controllers use services so we need a reference for our user service in the

controller, on the startup of the application spring will initialize the singletone service bean (if you

do not know what beans are please do some reading about spring beans) so we do not need to

initialize service, we can wire the service to our controller using “@Autowired” annotation which

wires the service bean to the reference defined in our controller.

That is all what we need to use UserService, so now we can use the user service to return

all the user data by calling getUserList method we created in the UserService class.

package com.example.demo.controllers;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.example.demo.models.User;
import com.example.demo.services.UserService;

@RestController
public class UserController {

 @Autowired
 UserService service;

 @RequestMapping("/users")
 public List<User> getAllUsers(){
 return service.getAll();
 }

 @PostMapping("/users")
 public String addOne(@RequestBody User user) {
 return service.addUser(user);
 }

}

Before running the application run the MySql workbench and connect to the database, then

you can run the application as we did in the previous experiment and test the methods you created.

Page | 128

4.4. Extra Things You May Do

➢ Delete

To delete object, we can use delete API which takes the id of the object to be deleted, we

can write our own custom delete methods same as get methods.

public String deleteUser(Integer userId) {
 userRepository.deleteById(userId);
 return "success";

 }

➢ Multiple Tables and relational database

When building applications, we are not writing data to single table, in our data model we

often have relationship between entities. We will talk about different associations:

• One to One

• One to Many

• Many to Many

➢ One to One

 one to one entity association is a relationship between two entities where the two side of

relation maps to only one object in the other side. For this relation, we will use user/office

relationship in which every user has an office and every office can be for only one user, we will

create office class with some attributes.

package com.example.demo.models;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="office")

Page | 129

public class Office {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column (name="office_id")
 private Integer id=null;

 @Column (name="office_roomCode")
 private String roomCode;
}

To build the association we will create a field for user inside office, to map it to User entity

we will user @OneToOne annotation, we will add cascade type persist, this mean when persisting

office object , the user object added to it will be persisted as well, then we will add @JoinColumn

which is the column that will be used to join the two entities.

@OneToOne (cascade=CascadeType.PERSIST)
 @JoinColumn(name="user_id",referencedColumnName="user_id")

private User user;

Name property in @JoinColumn will define the foreign key column in office table,

referencedColumnName will define the primary key column in the target entity.

This is a unidirectional relation, we can access user from office, but we cannot access office

from user, to make the relation bidirectional we can apply some changes.

First we need to add variable to hold the reference of office in user object, then we will

annotate it with @OneToOne annotation, also we will give mappedBy = “user”, here we are telling

jpa that this reference is mapped by user variable in office.

@OneToOne (mappedBy="user")
 private Office office;

So now we have a bidirectional relationship where we can access office from user and user

from office.

➢ One to Many

 one to many is an association between two entities where one entity has reference to more

than one entity while the other entity has reference to only one entity.

Page | 130

For this relation we will use user/account relation, one user can have many accounts while

and account can belong to only one user. First, we will create account class with some attributes

and accessors.

package com.example.demo.models;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="account")
public class Account {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column (name="account_id")
 private Integer id=null;

 @Column (name="account_codeNumber")
 private String codeNumber;

}

In User class we will add a collection of account, then we will use @OneToMany

annotation to map the relation, then we will use @JoinColumn, this may be confusing because in

one to one relationship this annotation was used in the owning entity (the entity which will have

the foreign key) but in this case its clear that Account should have the foreign key which is the id

of the user and not the opposite (User will have list of foreign keys since user can have list of

accounts).

Currently this is a unidirectional relation (we will not have reference for user inside account

object) so that leaves us with only the User to be able to specify the Join Column, JPA is smart

enough to know that the Account is the owning entity.

Also, we will specify the cascade type to be persist so accounts get persisted along with

the user, we will add additional attribute in the @JoinColumn which is nullable= false, this means

each persisted account should be referenced by a user.

 @OneToMany(cascade = CascadeType.PERSIST)
 @JoinColumn(name = "user_id", nullable = false)
 private List<Account> accounts = new ArrayList<>();

Page | 131

Until now the relation is bidirectional, we can access accounts from user, but the opposite

is not possible. To make the relation unidirectional first we will add a variable of type user inside

Account class, now we will use @ManyToOne annotation, many accounts to one user , now we

will specify the joincolumn using annotation @JoinColumn, note that we no longer need to specify

the join column in user table so we will remove it, also we need to specify the variable user mapped

by.

So, in User class we will have

 @OneToMany(cascade = CascadeType.PERSIST, mappedBy="user")
 @JoinColumn(name = "user_id", nullable = false)
 private List<Account> accounts = new ArrayList<>();

In Account class, we will have

 @ManyToOne
 @JoinColumn(name="user_id")

private User user;

So now we have a bidirectional relation where we can access any side of the relation from

the other side.

➢ Join Table:

Join table can be used as an alternative method to map one to many relationship, in many

cases in one to many relationship, relationship could be not mandatory, association between two

entities could occur but it’s not a must, in this case a junction table is used to avoid having null

values in the foreign key columns where the relation is not there, junction tables are used mainly

for many to many mapping but we will come to this later.

Junction table called also a join table, is a median table which holds the relationship

between two tables, it will have a foreign key for both the tables and the 2 keys are the primary

key of this table.

To demonstrate join tables, we will use relation user/car, note that every user can have

many cars but a car can only belong to a one user, but a user also can have no car, to map this

relation in jpa we will use @JoinTable annotation.

After creating car entity we will create a list of type car in user, we will put @OneToMany

annotation since the relationship is one to many, the we will add @JoinTable, we need to specify

Page | 132

the name of the junction table which will be user_car, then we will specify the join colum using

attribute joinColumn for the user side and the inverseJoinColumns for the car side.

@OneToMany(cascade = CascadeType.PERSIST)
@JoinTable(name = "user_car", joinColumns=@JoinColumn(name="user_id"),

inverseJoinColumns=@JoinColumn(name="car_id"))
private List<Account> cars = new ArrayList<>();

➢ Many to Many

 many to many relationships are relationships where each entity can map to many entities

in the other side of the relation, we will use user/course relationship, a user can be enrolled in many

courses and course can have many users.

First, we will demonstrate a unidirectional relationship, we will have to pick the owning

side of the relation, lets pick the user, so basically we should have a list of courses inside user, then

we will use @ManyToMany annotation, we will also use @JoinTable annotation as we did in the

previous section.

@ManyToMany(cascade = CascadeType.PERSIST)
@JoinTable(name = "user_course", joinColumns=@JoinColumn(name="user_id"),

inverseJoinColumns=@JoinColumn(name="course_id"))
private List<Course> courses = new ArrayList<>();

So now we have a unidirectional relation where we can access courses from user, to make

the relation bidirectional, we will not be changing anything on the user, in course entity we will

establish an association.

In course entity we will create a list of users, again we will use @ManyToMany annotation, with

mapped by attribute. So now we have a bidirectional relationship where we can access any side of

the relation.

 @ManyToMany(cascade= CascadeType.PERSIST ,mappedBy = "user")
private List<User> users;

5. Todo

This part will be given to you by the teacher assistant in the lab time

